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Time-domain detection of superluminal group velocity for single microwave pulses

Mohammad Mojahedi, Edl Schamiloglu, Frank Hegeler, and Kevin J. Malloy
Center for High Technology Materials and Department of Electrical and Computer Engineering, University of New Mexico,

1313 Goddard SE, Albuquerque, New Mexico 87106
~Received 17 May 2000!

Single microwave pulses centered at 9.68 GHz with 100-MHz~full width at half maximum! bandwidth are
used to evanescently tunnel through a one-dimensional photonic crystal. In a direct time-domain measurement,
it is observed that the peak of the tunneling wave packets arrives (440620) ps earlier than the companion free
space~air! wave packets. Despite this superluminal behavior, Einstein causality is not violated since the earliest
parts of the signal, also known as the Sommerfeld forerunner, remain exactly luminal. The frequency of
oscillations and the functional form of the Sommerfeld forerunner for any causal medium are derived.

PACS number~s!: 42.25.Bs, 03.65.Bz, 73.40.Gk, 42.25.2p
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I. INTRODUCTION

In their authoritative work, Sommerfeld and Brillouin@1#
considered the problem of electromagnetic wave propaga
in a dispersive medium. In part, this study was intended
explain the abnormal behavior of the group velocity in t
regions of anomalous dispersion since at the time it w
known that for these frequency ranges the group velo
exceeds the speed of light in vacuum~or is ‘‘superluminal’’!.
Considering the propagation of a sinusoidally modulated s
function through a Lorentzian medium, their delineation
the concept of wave velocity into such terms as phase, gr
energy, and forerunner~both Sommerfeld and Brillouin fore
runners! continues to be the standard description today.~To
be complete one has to add the term ‘‘signal velocity’’ d
fined as the velocity of the half maximum point to the lis
However, by their own admission such a definition is ar
trary ~@1#, p. 79!, and as we will see this velocity also may b
superluminal.! While phase, group, and even energy velo
ties are discussed in many undergraduate and graduate
tromagnetic books, the velocity of the forerunners has
received much attention.~While Jackson was one of the fe
authors to treat this subject in the earlier additions of
well-respected book, ‘‘Classical Electrodynamics,’’ to our
dismay we noticed that in the latest edition@2# this subject
has been omitted.! This is of particular importance since, a
will be shown below, the Sommerfeld forerunner veloc
~also referred to as the front velocity! is the only physical
velocity which must satisfy the requirements of special re
tivity.

The recent interest in the subject of superluminal gro
velocities was rekindled from consideration of the electr
tunneling time. Since ‘‘analogies’’ between photon and el
tron tunneling in particular@3,4#, and between Maxwell-
Helmholtz and the Schro¨dinger wave equations in gener
@5#, are well established, one may hope that experime
results from the more manageable photon tunneling exp
ment can be used to gain some insight into the more diffi
problem of electron tunneling time.

Working in theoptical regime, Chiao and co-workers@6#
used conjugate pairs of photons emitted simultaneousl
the process of spontaneous parametric downconversion,
found the tunneling velocity for a single photon through
PRE 621063-651X/2000/62~4!/5758~9!/$15.00
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one-dimensional photonic crystal~1DPC! to be superlumi-
nal. In this quantum-domain measurement, they observed
perluminal velocities 1.7 times greater thanc. Similarly,
Spielmanet al. used a Ti:sapphire laser capable of gener
ing 10–15-fs optical pulses atl50.8mm to study tunneling
through a 1DPC@7#. Using mirror-dispersion control and
nonlinear background free-correlation technique, they w
able to measure advances up to 6 fs in the autocorrel
signal.

To obtain larger advances in time, tunneling experime
can be performed in the microwave regime. In a series
experiments with different optical barriers such as und
sized waveguide, misaligned horn antennas, and two side
side prisms, Ranfagniet al. investigated the superlumina
tunneling for microwave frequencies@8–10#. Another series
of microwave experiments were performed by Nimtz and
co-workers@11–16#. While they were able to improve on
Ranfagni’s original work with an undersized waveguid
their frequency domain experiments in general and th
brief description of the 1DPC inserted inside an undersi
waveguide in particular suffer from interpretation and me
surement errors. The correct frequency domain measurem
procedures are described in Ref.@17#, and an attempt to cor
rectly interpret the results, particularly in light of commen
in Refs.@18,19#, is undertaken here.

This paper is organized as follows. In Sec. II, the expe
ment with single microwave pulses evanescently propaga
through a 1DPC is described. It is seen that a pulse tunne
through a 1DPC arrives (440620) ps earlier than a puls
traveling an equivalent physical distance in free space
Sec. III, a proof is given that for a signal propagating
distancex, no detection is possible for times less thant0
5x/c. Additionally, we have attempted to address the m
common misunderstandings and misinterpretations ass
ated with the subject of superluminal group velocities.
light of the importance of the Sommerfeld forerunner, p
ticularly in relation to the requirements of special relativit
the frequency of oscillation and the functional form of the
early fields for any causal medium are discussed in Sec.
Section V contains the conclusions and our summary.

II. EXPERIMENTAL RESULTS

The considerable difficulties associated with defining
unique tunneling time have been well documented@20,21#.
5758 ©2000 The American Physical Society
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PRE 62 5759TIME-DOMAIN DETECTION OF SUPERLUMINAL GROUP . . .
However, regardless of the various definitions of tunnel
time, one can, to use a phrase from Chiao@21#, propose an
‘‘operational’’ definition of the time of flight. This idea is
depicted in Fig. 1.

When the wave peak reaches the pointx1 , we start our
stop watch (t1). Some time later (t2), the wave maximum
reaches the pointx2 . The ‘‘operational’’ time of flight is
then given byt22t1 . In a more elegant version of the sam
idea, the stop watch is replaced with a companion pulse
travels the same distance (x22x1) in vacuum. In this man-
ner, the time of flight for a pulse traversing a medium~here
a 1DPC! can directly be compared to the time required
cover the same distance in free space. With the above
scription, one should be able to measure the time of flight
either electronic or photonic waves. In this paper we ha
concentrated on the electromagnetic wave packet tunne
and its time of flight.

Figure 2 shows the experimental setup used in the ti
domain measurements. A BWO is used to generate the
crowave pulse and a mode converter~MC! changes the TM01

FIG. 1. Scheme used to define the ‘‘operational’’ time of fligh

FIG. 2. Time-domain experimental setup.
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mode ~an annular pattern! to a TE11 mode ~a central-lobe
pattern!, which is then radiated via a conical horn anten
~CHA!.

The diameter of the CHA is 15 cm, which by conservati
estimates places the antenna’s far field at approximately
cm for 9.68 GHz. Two directional couplers attached to
series of attenuators and a HP 8470-B, low-barrier Scho
diode detector~provided in pairs! were used to detect th
microwave pulse at two distinct points in the antenna’s
diation intensity pattern. These two points will be referred
as the ‘‘center’’~at the center of the antenna’s pattern! and
the ‘‘side’’ ~at the side of the antenna’s pattern!. The signals
from the HP detectors are then routed to two fast Tektro
SCD-5000 single channel oscilloscopes. Each Tektro
scope has a 4.5-GHz bandwidth and was set to record 1
points over a 50-ns window. This means that the time int
val between two adjacent points on the pulse trace was
proximately 48.9 ps.

In order to reduce the scope trigger jitter as much as p
sible, a line from the Sinus-6 accelerator section of the BW
was routed to a PSPL fast picosecond pulse generator, m
4500E. This pulse generator is capable of producing trigg
ing pulses with very sharp raise times~a 10–90 % rise time
of roughly 100 ps!, which in turn is used to trigger both
Tektronix scopes. Such an effort reduces the uncertainty
sociated with the triggering jitter to approximately 20 p
The frequency of the microwave pulse is measured by h
erodyning the signal against a known oscillator~not shown
in Fig. 2! @22#. Repeated measurements on the microwa
signal indicated that the pulse frequency content is cente
at 9.68 GHz with a 100-MHz bandwidth@full width at half
maximum~FWHM!#.

For our setup described above, a series of single s
were fired in order to measure the delay between the ‘‘c
ter’’ and ‘‘side’’ paths. This delay is due to the fact that th
cable length, the attenuators and detectors, and the inte
response of the two scopes are not exactly identical. H
ever, such a systematic and repeatable delay is readily m
surable and its effect is easily removed by electronically
troducing a delay or advancement for one of the two pa
@For example, the trigger delay option of the SCD-5000 c
be used to introduce the appropriate delay such that
peaks of the two traces~‘‘center’’ and ‘‘side’’ ! arrive at the
same time. Equally well, a data acquisition software such
LABVIEW or a plotting package can be used to shift one of
two traces by the measured delay such that their peaks a
at the same time.# After synchronizing the two paths suc
that the peaks of the ‘‘center’’ and the ‘‘side’’ pulses arriv
at the same time, a 1DPC with its band gap tuned to the m
frequency component of the incident pulse~9.68 GHz! is
inserted along the ‘‘center’’ path. The 1DPC used consis
of five polycarbonate sheets of thickness 1.27 cm and
index of 1.66 separated by regions of air of thickness 4.1
and index of unity. The details describing the design of t
1DPC will be discussed elsewhere. The insertion of
1DPC along the ‘‘center’’ path allows us to measure t
advancement or the delay of the tunneling pulse as comp
to the companion free-space pulse~‘‘side’’ !.

Figure 3~a! shows the synchronized ‘‘center’’ and ‘‘side’
pulses, without the 1DPC present. In order not to crowd
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figure, only every third experimental data point~the1 and3
signs! are shown. The solid curves are the locally weigh
least-square fit, used to obtain the best smooth cu
through the experimental data~@23#, pp. 246 and 247!, and
they match the raw data~including those not shown here!
well.

An expanded view of Fig. 3~a! in the vicinity of the pulse
maxima is shown in Fig. 3~b!. Also, on the right axes we
have plotted the percent relative difference between the
tual raw experimental data and the least-square fit. From
figure it is clear that the match between the raw data and
fit is good to less than 2.5%. Since the fit is of similar qual
for the remaining figures presented in this paper, we disp
only the fitted curves for clarity of presentation. As is evide
from this figure, the peaks of the ‘‘center’’ and the ‘‘side
pulses arrive at the same time. We note that the main rea
for the difference between the two pulses’ shapes is the
that they were sampled at two different points of the rad

FIG. 3. Synchronized pulses propagating along ‘‘center’’ a
‘‘side’’ paths: ~a! every third experimental raw data along wi
the locally weighted least-squares fit is shown,~b! an expanded
view of ~a! where the least-squares fit and the percent relative
ference between the fit and the raw data is shown.
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tion intensity pattern. Slight frequency response mismatc
among the components used along the two paths are
contributing factors.

At this point, the 1DPC is inserted in the ‘‘center’’ pat
while leaving the ‘‘side’’ path unchanged. Figure 4~a! shows
the result. This figure and its expanded view in the vicin
of the pulse maxima@Fig. 4~b!# indicate the pulse propaga
ing along the ‘‘center’’ path, and tunneling through th
1DPC arrives sooner than the companion free-space ‘‘si
pulse. For the peak of the pulse, this shift to earlier time
measured to be 440620 ps. Although Figs. 3 and 4 displa
the normalized~with respect to the maximum! wave packets,
it is important to note that due to the evanescent tunnel
the ‘‘center’’ wave packet has been attenuated by a facto
2.8.

The traditional view of pulse propagation through a r
gion with high attenuation~regions of anomalous dispersion!
held that the extreme attenuation~coupled with the disper-
sion! would distort the signal to such an extent that the ori

f-

FIG. 4. The pulse propagating along the ‘‘center’’ path a
tunneling through the 1DPC, and the pulse propagating along
‘‘side’’ path in free space: ~a! the normalized wave packets,~b!
the expanded view of~a! in the vicinity of the pulses maxima.
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nally well defined wave packet and its peak would not
recognizable upon emergence. For example, Landau and
shitz write, ‘‘When considerable absorption occurs, t
group velocity cannot be used, since in absorbing med
wave packets are not propagated but rapidly ironed o
~@24#, p. 285!. In a similar manner, Sommerfeld, citing Lau
states, ‘‘. . . with anomalous dispersion, due to the stro
absorption which destroys the significance of a character
wavelength after a short path length, one can no lon
sharply define the velocity of propagation of the energ
~@1#, p. 22!. It is the same understanding which compell
Brillouin to write, ‘‘ . . . but if absorption also occurs,a @the
wave vector# becomes complex or imaginary and the gro
velocity ceases to have a clear physical meaning’’~@25#, p.
75!. ~The expression inside of the brackets is ours.! In light
of the above, it is important to emphasize the following tw
points. First, for a sufficiently narrowband pulse centered
a region of minimal frequency dispersion, it is possible
propagate an evanescent mode through an optical ba
such that, while the transmitted wave packet is reduced
magnitude, it suffers negligible dispersion or distortion. S
ond, if group velocity is a useful physical parameter in d
scribing the wave packet propagation through the ‘‘cente
path without the 1DPC present~i.e., pulse marked ‘‘center’’
in Fig. 3, which propagates through free space!, and if upon
insertion of the 1DPC in the ‘‘center’’ path the emergin
tunneling wave packet envelope~pulse marked ‘‘Tunneling’’
in Fig. 4!, though reduced in amplitude, closely resemb
the nontunneling wave packet, then the concept of gr
velocity is still valid for the latter case.

Figure 5 demonstrates these two points. It shows the
neling~the solid curve! and the free-space~the dashed curve!
pulses along the same ‘‘center’’ path. The tunneling pu
was obtained with the 1DPC inserted in the ‘‘center’’ pa
whereas the free-space pulse was acquired without the p
ence of the PC for the same path. In order to make
comparison easier, the free-space pulse was manually sh

FIG. 5. A measure of the pulse broadening due to tunne
through 1DPC. The two pulses have propagated along the s
path ~‘‘center’’ ! in free space and through the 1DPC. The fre
space pulse is manually shifted to an earlier time to make the c
parison clearer.
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to earlier times to coincide with the tunneling pulse.
Measurements show that the FWHM of the free-spa

wave packet is approximately 9.1 ns, while the FWHM
the tunneling wave packet is 9.3 ns, indicating a 2.2%
crease. Considering such a small broadening, we hav
accept that if group velocity is a good parameter for t
free-space pulse, it also must be a good parameter for
tunneling pulse.

The shift to earlier time displayed in Fig. 4 after synchr
nizing the two paths can be calculated according to

Dt5
LPC

c
2tg , ~1!

whereLPC is the physical length of the PC andtg is the time
associated with traversing the 1DPC, also known as gr
delay. ~Group delay is the angular frequency derivative
the 1DPC transmission phase.! Since the structural param
eters for the 1DPC are known, the PC length and the gr
delay~at 9.68 GHz! can be evaluated to be 22.75 cm and 3
ps, respectively@17,26#. Substituting these values in Eq.~1!
results in the calculated time shift (Dt) of 438 ps, which is in
good agreement with the measured value of 440620 ps. The
group velocity of the wave packet propagating through
1DPC of lengthLPC is given byng5LPC/tg and is related to
the time shift~Dt!

ng5
LPC

~LPC/c!2Dt
. ~2!

Equation~2! implies that for the measuredDt5440620 ps,
the microwave pulse group velocity traveling through t
1DPC is approximately (2.3860.15)c. This agrees well with
the calculated group velocity of 2.37c.

Finally, let us consider the velocity by which the ha
maximum of the signal propagates. This velocity is of so
historical importance since it was used by Sommerfeld a
Brillouin to define the ‘‘signal velocity’’~@1#, p. 74!. These
authors used this velocity, hereafter referred to as the S
merfeld signal velocity, as a velocity equal to the group v
locity away from the regions of anomalous dispersion, wh
also remained subluminal within the region of anomalo
dispersion~@1#, p. 76!. However, by their own admission
such a definition is rather arbitrary~@1#, p. 79!. To directly
cite them, Brillouin writes, ‘‘In general the signal velocit
measured depends on the sensitivity of the detecting app
tus used. With a very sensitive detector, even the forer
ners, or certain parts of them, might be detected . . . But if
the sensitivity of the detector is restricted to a quarter or h
the final signal intensity, then an unambiguous definition
the signal velocity can, in general be given’’~@1#, p. 100!. A
comparison of Figs. 3 and 4 shows that the half maxim
point of the pulse propagating along the ‘‘center’’ path a
tunneling through the 1DPC has shifted to earlier time
303 ps, indicating that the Sommerfeld signal velocity is a
superluminal. In light of this fact, and other problems as
ciated with the definition of energy velocity in the case of
inverted medium as discussed in Refs.@21,27–32#, the true
‘‘signal velocity’’ as it is to be used in connection with th
theory of special relativity must refer to the velocity b
which the front or Sommerfeld forerunner propagates. Ho
ever, it must be pointed out that due to high frequency a
small amplitude of the forerunner, this new definition
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‘‘signal velocity,’’ although necessitated by Einstein caus
ity, is probably not a practical definition under all circum
stances. The subject of the front or Sommerfeld forerunne
discussed in the next section.

III. WHY EINSTEIN CAUSALITY IS NOT VIOLATED

A. Causal signals or signals with front

In this section a simple proof that no signal can tra
faster thanc is given. Although parts of this proof can b
found elsewhere@21# ~@33#, pp. 315 and 316!, in light of
recent objections to Einstein causality for evanescent mo
@19# and previous concerns regarding the feasibility of g
erating a front and its relevance to ‘‘signal velocity’’@18#,
we intend to provide a more complete and coherent desc
tion of the underlying physics and the mathematical form
isms.

Figure 6 shows an incident electromagnetic pulse tra
ing in vacuum from left to right. At the timet50, the pulse
reaches the boundary of a medium characterized by the in
of refractionn(v), given by

n~v!5c
k~v!

v
. ~3!

This medium can be a dielectric slab, an undersized wa
guide, a 1DPC, or any material or structure for which t
dispersion is described byn(v). For the sake of simplicity,
here we only consider the case of one-dimensional prop
tion. However, the results presented here can easily be
tended to higher-dimensional situations, although in so
cases~for example, polarization effects or finite transver
size limitations! this extension may require more rigorou

FIG. 6. A pulse impinging upon a causal medium characteri
by index ~or effective index! n(v).
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reasoning. For the pulse impinging on the boundary at n
mal incidence, the electric field at positionx and timet is
given by ~@2#, p. 336!

u~x,t !5E
2`

1` 2

11n~v!
A~v!eik~v!x2 ivt dv

5E
2`

1`

g~v!eif~v! dv, ~4!

whereA(v) is the signal spectrum, given by

A~v!5
1

2p E
2`

1`

u~x50,t !eivt dt. ~5!

We require that the signal have a well-defined front,

u~0,t !50 for t,0,
~6!

u~0,t !Þ0 for t>0.

The above condition is a requirement for any ‘‘true si
nal.’’ In other words, for any physically realizable electr
magnetic pulse, there must be a point in time prior to wh
the amplitude of the field is identically zero.~Throughout
this work, the effect of noise is neglected. Clearly in t
presence of the noise, statistical considerations regar
noise and its effect on the front must be included.! For ex-
ample, in our experiment the times prior to the discharge
the capacitor in the BWO result in zero amplitude for t
microwave pulse. In a similar manner, for Chiao’s sing
photon experiment@6#, one can always point to the time
prior to the process of photon downconversion as times
which no tunneling photon exists. Stated differently, in co
trast to the view set forth by the authors in Refs.@18,19#,
strictly time limitedsignals and notstrictly frequency band
limited signals are the norm of the physical universe.~Even
the microwave background radiation, which has presuma
started with the Big Bang, is by definition a strictly time
limited signal. Needless to say, this radiation was never
lized in any of the experiments concerned with superlumi
group velocities.! Perhaps the arbitrary convention of defi
ing the frequency content of a given electromagnetic puls
terms of a pair of numbers~be it FWHM or any other! has
caused confusion in thinking that a ‘‘true signal’’ generat
at a given point in space and time cannot or should not h
frequency components outside the interval defined by
aforementioned pair of numbers.

The fact that the value of the field is zero up to a giv
time @Eq. ~6!#, along with a few other reasonable assum
tions ~discussed in the following sections!, is sufficient to
show that the value of the integral in Eq.~4! is identically
zero fort,t0 . In contrast to the opinion expressed by Nim
et al. that ‘‘there is no experimental condition known b
which such a well defined front could be generated,’’ Eq.~6!
is justified for any ‘‘true’’ as opposed to a mathematica
constructed signal. More importantly, the manner in wh
the field does turn on has no effect on the result expres
above. A signal can be turned on as slowly~a linear function
of time! or as quickly~exponentially with time! as possible,
and the value of the integral in Eq.~4! remains zero for all
times less thant0 .

d
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Before proving the above statement, in light of the co
troversies surrounding superluminal velocities it is import
to discuss objections raised in Refs.@18,19#. In describing
their frequency domain measurements, Nimtzet al. write,
‘‘The Fourier transformF(t)5*n1

n2dn A(n)T(n)e2p int yields

the time response of the measured regions. As this sign
frequency band limited, it extends from2` to 1` in the
time domain. Since there is no defined front, such a sig
cannot be used to check Einstein causality.’’ Aside from
authors’ unphysical assumption that such a ‘‘signal’’ has
isted for all time in the past and will continue to exist for a
time to come, their frequency domain measurements su
from both experimental and interpretation errors. The corr
frequency domain approach, particularly for the case o
1DPC as the optical barrier, is discussed in Ref.@17#. In the
Nimtz et al. experiments the fact that one is able to se
frequency sweep range~strictly frequency band limited to
n12n2) with a network analyzer does not mean that an
tual signal extending in time from2` to 1` has been gen
erated. The NA and its synthesized source measurea portion
of the frequency domain transmission coefficient, which
then used in a Fourier transform by Nimtzet al.and assumed
to describe thecompletetime-domain results. Moreover, thi
approach requires assuming an incident pulse@A(n), a
Gaussian or Kaiser-Bessel function# which in reality has not
been generated. As was discussed above, man-made s
must begin at a point in space and time and hence by d
nition are strictly time-limited.

The author in Ref.@19# also claims, ‘‘In this letter I shall
show that frequency band limitation is a fundamental pr
erty of signals and that such signals containing only evan
cent modes can violate Einstein causality.’’ He then arg
that, ‘‘In theory switching on a signal generates infinite
high frequencies . . .However, signals with an infinite spec
trum are impossible, since Planck has shown in 1900 that
minimum energy of a frequency component is\v . . . Since
a signal has a finite energy~may be as small as of the orde
of 100 photons only!, it follows that its spectrum has also t
be finite.’’

In view of the above, it is important to note that the co
cept of infinity is a mathematical construct that physical
ality can only approximate. For example, in all of the sup
luminal experiments in the microwave regime, one c
safely say that frequencies in the range of tens or hundred
GHz are a good approximation to the idea of infinitely hi
frequencies.@For the wave packet used in our experime
~centered at 9.68 GHz with a FWHM of 100 MHz!, one can
easily say that frequency components of ten or tens of G
are indeed high frequencies which can be employed in
formation of the signal’s front.# More precisely, neglecting
frequency components higher than these results in quan
able errors as small as desired. More importantly, in
theory of signal processing and communication it is rathe
well known fact that the energy of a signal@u(t)# is given in
terms of its spectral density@U(n)# according to~@34#, p. 38!

E5E
2`

1`

U~n!U* ~n!dn5E
2`

1`

uU~n!u2dn. ~7!
-
t
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Clearly, the functionU(n) does not have to be strictly fre
quency bandwidth limited for the above integral to rema
finite.

Furthermore, in regard to the ‘‘minimum energy of a fr
quency component’’ alluded to by the author of Ref.@19#,
the following two points need consideration. First, it is un
versally accepted that a genuinely monochromatic pl
wave ~a frequency domaind function! with energy\v is
never physically realizable, and even the most narrow w
packet must contain some frequency spread. Second,
respect to the citation of the original work by Planck,
should suffice to say that the spectral energy density~energy
per unit bandwidth per unit volume! is the product of the
average energy per mode and the modal density. For
ample, in the case of blackbody radiation, this is given
~@35#, p. 452!

r~n!5
8phn3

c3

1

exp~hn/kBT!21
, ~8!

whereT, h, andkB are the temperature, Planck constant, a
Boltzmann’s constant, respectively. It is a matter of sim
exercise to show that the integration of Eq.~8! for all fre-
quencies and over a physical volume yields a finite ener

Upon returning to Eq.~4!, in order to show that the value
of the integral is identically zero for all times less thant0
5x/c, we need one more requirement. Stated simply, t
requirement reads as follows: we shall not expect to mea
a response from the medium characterized byn(v), in the
absence of a stimulus.@The reader may note that at this poi
nothing has been said with regard to the maximum speed
which a stimulus can propagate. The limitation on the stim
propagation speed is set by special relativity and will
confirmed as the result of the proof that the value of
integral in Eq.~4! is identically zero for times less thanx/c.#
This is merely the description of a causal medium for wh
the effect cannot proceed the cause. This condition is m
ematically expressed as~@2#, p. 330!

«~v!

«0
215E

0

1`

G~t!eivt dt, ~9!

with G(t)50 for t,0. G(t) is what is commonly referred
to as the susceptibility kernel and is given by

G~t!5
1

2p E
2`

1`

@«~v!/«021#e2 ivt dv. ~10!

B. Titchmarsh theorem

Using the Titchmarsh theorem~@36#, p. 426!, it is straight-
forward to show thatu(x,t) is identically zero fort,t0
5x/c. This theorem states that any one of the concepts
causality, analyticity, or the Hilbert transform implies th
other two. In our particular example, the requirement o
signal with a front@also known as a causal signal, Eq.~6!#
implies thatA(v) from Eq. ~5! must be analytical in the
upper half plane~UHP! of the complexv plane. Similarly,
the requirement of the causal medium@G(t)50 for t,0#
implies thatn(v) and consequently 2A(v)/@11n(v)# must
also be analytical on the UHP. Now, consider the phase t
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in Eq. ~4! away from the realv axis (v→z5h1 i j
5uvueiq) and in the limit ofuvu→`. This is given by

exp~ if!5expF i
h

c
~x2ct!GexpF2

j

c
~x2ct!G as uvu→`,

~11!

wheren(v)→1 asuvu→` ~@2#, p. 333!.
If x2ct.0, then, in the UHP~i.e., j.0) we have

exp~ if!→0 as uvu→`. ~12!

At this point we use contour integration to evaluate t
integral in Eq.~4!. We can then write

u~x,t !5E
2`

1`

g~v!eif~v! dv

5 R g~z!eif~z! dz2 lim E
0

p

g~ uvueiq!

3eif„uvu,exp~q!…i uvueiqdq,

uvu→`, ~13!

where the counterclockwise semicircle contour is closed
the UHP. From the results in Eq.~12!, the last integral in Eq.
~13! vanishes asuvu→` ~this is Jordan’s lemma!. Further-
more, since we have seen thatg(v)eif(v) is analytical in the
UHP, from the Cauchy-Goursat theorem the closed con
integral is also zero, thereforeu(x,t) is zero forx2ct.0.
This completes the proof that no signal can travel faster t
c; the result is summarized as follows:

u~x,t !5E
2`

1` 2

11n~v!
A~v!eik~v!x2 ivt dv

5E
2`

1`

g~v!eif~v! dv50

for x2ct.0[t0.t[V.c ~14!

with t05x/c andV5x/t.

IV. SOMMERFELD FORERUNNER

A. Stationary phase approximation

In the preceding section we showed that at the positiox,
for times less than the time for light in vacuum to travel t
distancex ~i.e., t0), there will be no field. For times large
than t0 , the contour must be closed in the lower-half-pla
LHP in order for the contribution from the infinite semicirc
to be vanishingly small. Now a question can be asked
there some general behavior of the earliest parts of the p
~the Sommerfeld forerunner! which can be ascertained with
out the need for a specific model of the index? The answe
this question is yes. In other words, a qualitative descript
of the Sommerfeld precursor’s field can be obtain wh
would be applicable to any dispersive system such a
Lorentzian medium, a 1DPC, or an undersized wavegu
and so on. Thus far in the literature, whenever such a p
lem has been discussed, a Lorentzian model of the index
n

ur

n

Is
lse

to
n

a
e,
b-
as

been chosen@1# ~@33#, pp. 313–326!. We show here that the
results derived for a Lorentzian model can be generally
plied to any spatially or temporally dispersive system w
only a change in the definition of a constant.

Sommerfeld and his student Brillouin used the steep
descent method~SDM! for a Lorentzian dispersion with a
sinusoidally modulated step-function input, to calculate
first ~Sommerfeld! and second~Brillouin! precursors~@1#, pp.
23–83!. Here we apply the less rigorous yet simpler statio
ary phase method~SPM!. A comparison between the tw
methods is provided by Brillouin~@1#, pp. 81–83!. However,
in the case of a purely real index, the SPM and SDM
equivalent, and fortunately in the limit ofv→` ~the situa-
tion relevant to the Sommerfeld precursor!, any index be-
haves as purely real to within 1/v2.

The stationary phase condition~SPC! ]f/]v50 can be
used to write

n1v
dn~v!

dv
5

ct

x
5c

dk

dv
5

c

ng
5

t

t0
for t>t0 , ~15!

where Eq.~3! was used, andng is the group velocity (ng
5dv/dk). Equation~15! provides us with the locations o
the stationary points at different times. Using Eq.~15!, it is
easy to show that the earliest contributions to the integra
Eq. ~4! come from the values of the index at large freque
cies (v→`). To see this, let us evaluate the left-hand s
of Eq. ~15! for the value of the index atv→`. We have

n~v→`!1v
dn~v→`!

dv
511051. ~16!

However, Eq.~16! is also equal tot/t0 , which implies that
the first intersection of the horizontal linet/t0 with n
1vdn/dv occurs fort5t0 . But, this is merely the onset o
pulse propagation.

B. Forerunner frequency of oscillations

In the preceding section we showed that for the time eq
to t0 the stationary point is atv5`. Now, let us evaluate the
stationary phase points for timesimmediatelyafter t0 . Using
integration by parts and neglecting terms of order 1/v3 and
higher, it can be seen that the index of refraction in the lim
of large frequencies is purely real and given by@26, ~@2#, p.
333!

n~v!'12
G8~0!

2v2 , ~17!

where the prime denotes the derivative of the susceptib
kernel with respect to time. Substituting Eq.~17! in Eq. ~15!
and solving forv5vs results in

vs5AG8~0!Y F2S t

t0
21D G1/2

. ~18!

For Lorentzian dispersion,G8(0) is equal to the square o
the plasma frequency~@2#, p. 331!, so that Eq.~18! can be
rewritten as
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vs5vpY F2S t

t0
21D G1/2

. ~19!

Our Eq.~19! is identical to the expression obtained by So
merfeld ~@1#, p. 54! for the Lorentzian medium. Equatio
~18! or equivalently Eq.~19! imply that at a given observa
tion point, for times immediately aftert0 , the points of the
stationary phase~Sommerfeld forerunners! only depend on
the gross properties of the medium@e.g.,vp or AG8(0)#.

C. Forerunner functional form

In order to calculate the functional form of the Somme
feld forerunner, the input signal must be known. Followi
Jackson’s~@33#, p. 314! consideration of a Lorentzian me
dium, we choose to model the earliest parts of the in
signal by a polynomial of orderm; hence

u~0,t !5
atm

m!
↔A~v!5

a

2p S i

v D m11

, ~20!

wherea is a constant andm is an integer. Equation~20! can
be used to emulate the earliest parts of a variety of in
functions. By increasing the order of the polynomial, inp
signals with increasingly sharper rise times can be mode

Once again, let us use contour integration in order
evaluate the integral in Eq.~4!. For times greater thant0 , the
contour must be closed in the LHP (j,0), and in a manner
similar to the previous discussion@Eq. ~11!# the contributions
from the infinite semicircle tend to zero forx2ct,0. There-
fore, the value of the field at positionx and timet is given by

u~x,t !5E
2`

1`

g~v!eif~v! dv

52 R g~z!eif~z! dz

for x2ct,0[t0,t[n,c. ~21!

Now, let us substitute Eq.~20! in Eq. ~21! and replace the
index in 2/@11n(v)# with unity and the index inf~v! with
n(v)'12G8(0)/(2v2), where v→z5h1 i j5uvueiq.
These two separate approximations, one for the amplit
and the other for the phase, are similar to the Fresnel
proximation in diffraction theory where higher-order term
in the expansion of the phase are retained in order no
generate errors much greater than 2p radians~@37#, pp. 58
and 59!. After some mathematical manipulation, we have
pt
-

-

t

t
t
d.
o

e
p-

to

u~x,t !'aS t2t0

g D m/2

Jm@2Ag~ t2t0!# for t.t0 . ~22!

where

g5
G8~0!

2c
x5

G8~0!t0

2
, ~23!

andJm is the Bessel function of the first kind of orderm. As
before, in the case of Lorentzian dispersion,G8(0) is re-
placed with the square of the plasma frequency (vp

2). Equa-
tion ~22! for m51 is identical to the expression obtained b
Sommerfeld~@1#, p. 41!. Equation~22! implies that for input
signals with sharper rise times~larger m!, the order of the
Bessel function will increase and the forerunner amplitu
will decrease.

V. CONCLUSIONS

In this paper we have described an experiment with sin
microwave pulses tuned to the band gap of a 1DPC. I
observed that the peak of these tunneling wave packets
rives 440620 ps sooner than the accompanying wave pac
traversing the same distance in free space. This implies
the wave packet has propagated through the 1DPC 2
60.15 times faster than the speed of light in a vacuum. D
spite this abnormal behavior, there is no violation of Einst
causality since the Sommerfeld forerunner~also referred to
as the front! remains exactly luminal. In response to obje
tions raised by some authors, a proof that no detection
signal at the pointx is possible for tunes less thanx/c is
provided, and the universality of the strictly time limite
signal~signals with fronts! is discussed. Since propagation
the Sommerfeld forerunner is ultimately associated with
propagation of information, the frequency of oscillation a
the functional form of these fields for any causal medium
presented.
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