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A metamaterial with a negative effective index of refraction is made from a two-dimensional square lattice
photonic crystal with a metallic cross lattice basis. A simple procedure is given to design a negative index band
within a desired frequency range. The operating frequency is made sufficiently low so as to avoid high orders
of diffraction from a slab. An effective index of −1, which is a requirement for perfect lensing, is designed. In
addition, the structure is optimized to exhibit the largest possible bandwidth of negative refraction, while
ensuring an isotropic response and efficient coupling from free space. Simulation results show negative refrac-
tion of a Gaussian beam through a prism of such a metamaterial. The simplicity and versatility of the structure
make it a suitable candidate for frequencies into the infrared region. The dispersive nature of the metallic
crosses and planar fabrication are also discussed.
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I. INTRODUCTION

In the past few years, there has been much interest in the
design of metamaterials with a negative index of refraction.
Perhaps the most intriguing application of these metamateri-
als is the perfect lens, which can regenerate the entire wave-
number spectrum of the source at the image plane.1 This
proposition has created much excitement and the develop-
ment of these metamaterials has been rapidly progressing for
the microwave regime,2,3 with the hope of also demonstrat-
ing a negative index of refractionsNIRd at terahertz and in-
frared frequencies. Photonic crystalssPCsd are structures
with periodic arrangements of dielectrics or metals, and are
one possible way of synthesizing an effective NIR. This ap-
proach has been previously reported and verified
numerically,4–8 with some experimental demonstrations of
point imaging by flat slabs at microwave frequencies.8,9

However, there are a number of outstanding practical issues
which should be considered. For example, Notomi’s early
negative index PC design,4 which relies on the isotropic be-
havior of a properly shaped high-order band near the center
of the Brillouin zone, operates at frequencies above the
Bragg frequency. Consequently, losses may be attributed to
higher orders of diffraction.6,8,10 In addition, the compatibil-
ity of the modes of high-order bands with free space in all
directions is crucial, yet rarely verified. The more recent use
of the anisotropic behavior of a PC near the Brillouin-zone
corners5 can solve some of these issues, but this places a
restriction on the lattice orientation if the PC were shaped as
a flat slab or a prism and, as implied, the response is no
longer isotropic. More importantly, this anisotropic behavior
and a collimation effect have been cited as reasons for the
imaging effect, rather than negative refraction itself.11–14It is
clear that there are practical limitations which need to be
addressed with either negative-index PC design. The goal of
this work is to explore and overcome the limitations of the
plane-wave refraction in PC metamaterials that relies on
high-order isotropic bands.

This paper presents the use of a metallic cross lattice basis
in a two-dimensional photonic crystals2DPCd in order to

synthesize an effective NIR. The cross basis offers a degree
of freedom beyond the conventionally studied PCs with a
cylindrical rod basis, and consequently provides more versa-
tility and ease of design. A metallic PC is chosen with the
intention of decoupling the effects of the basis geometry and
the background dielectric constant on the overall shape of the
band structure. Furthermore, it is observed that the shape of
the band structure for a metallic PC with cross basis is much
different from that of a PC with cylindrical rod basis, and as
such it facilitates a more “tunable” response. Moreover, the
cross basis allows one to design a NIR at frequencies suffi-
ciently low so as to eliminate the large losses due to high
orders of diffraction. The low-frequency range also provides
the opportunity to design the PC to have an effective index
of −1, which is a necessary criterion for “perfect” focusing.1

An example design with this value of index will be pre-
sented. It should be noted that an effective index of −1 has
not been possible with other isotropic PC designs.

This paper is organized as follows. Section II reviews the
theory of a negative effective index of refraction in PCs.
Section III introduces the metallic cross basis and the nu-
merical methods used for calculating band structures. Sec-
tion IV discusses the band structure of the proposed metama-
terial and a design method. Section V shows the time-domain
simulation of negative refraction for a Gaussian beam propa-
gating through such a 2DPC. Finally, Sec. VI summarizes the
results, and includes the dispersive and lossy nature of met-
als in the analysis of a 2DPC with cross basis suitable for
operation at far-infrared frequencies. A few remarks on the
possible fabrication of such a device are also provided.

II. NEGATIVE REFRACTION IN PHOTONIC
CRYSTALS

The theory by Notomi4 described wave propagation in
PCs. That work presented a simple method aimed at analyz-
ing plane-wave propagation in periodic structures by using
the equifrequency surfacessEFSsd of the band structure and
their gradients. It was shown that an effective index of re-
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fraction may be assigned to a 2DPC for frequency ranges in
which the EFSs are circular. Thus, for a PC, an isotropic
effective index of refraction may be defined and used in the
sense of Snell’s law. This effective index conveniently en-
capsulates the response of an otherwise inhomogeneous PC
based on the directions of the group velocities. It was also
shown that this effective index of refraction could even be
negative.4,6 This is the case if an EFS decreases in radius
swave numberd with increasing frequency. Equivalently, this
may be recognized in the photonic band structure as a band
with downward curvature, or negative second derivative,
about theG point.

Ideally, an effective index would be sufficient to describe
the refraction of a beam through a prism or slab made of a
PC. However, improper design could allow high orders of
diffraction to emerge from a prism, in addition to the main
refracted beam. This is the case if for a given frequency and
propagation direction the wave is allowed to “see” the full
periodicity of the crystal. The PC then acts like a diffraction
grating.

To demonstrate how the higher orders of diffraction arise,
the method of analysis for wave propagation in reciprocal
space will now be reviewed.4,6 Assume that a 2DPC with a
square lattice, cut in the shape of a flat slab, is sandwiched
between two semi-infinite regions of free space. Further-
more, assume that a slab of finite width may be analyzed as
though it were infinite in extent. Figure 1 shows the recipro-
cal space representation of the system, with the EFSs for
each region superimposed. Note that the EFS for the PC is
repeated by an infinite number of translations of the
reciprocal-lattice vectorsG, although only the first few rep-
etitions are shown. The first Brillouin zone is indicated by a
dotted square. For simplicity, every EFS in this example is
taken to be a circle. A plane wave with wave vectork i is
incident on the slab from free space with angleui. The phase-
matching condition at the incident interface is indicated by a
dashed line. Phase matching at the first interface, along with
periodicity in reciprocal space, determines the infinite num-
ber of wave vectors that are excited within the PC. These are
shown as thinsblackd arrows. The figure stresses the fact that
the periodic Bloch wave implies an infinite superposition of
plane waves with the wave vectorsK +G, whereK is the
Bloch wave vector. The group velocities, shown as thick
sredd arrows, are the gradients to the EFSs at the points of the
wave-vector solutions and, assuming a 2DPC with an effec-
tive NIR, they point inward toward theG point. Only the
phase-matched wave-vector solutions whose group velocities
point away from the first interface are chosen, to ensure that
energy propagates away from the sourcesi.e., a positive
group velocity within the 2DPC passbandd. Also note that the
group-velocity vectors shown within the PC are identical,
emphasizing the well-defined angle of refraction for the
2DPC. On the other hand, the infinite number of wave vec-
tors excited within the PC results in a large number of phase-
matching conditions at the second interface. Now, if the free
space EFS is large enough due to a high operating frequency,
as shown in Fig. 1, more than one of these phase-matching
conditions is satisfied for real propagating wave vectors in
free space. Thus, in this example, two plane waves would
emerge from the PC.

The aforementioned high orders of diffraction must be
avoided in practical devices. The general example in Fig. 1
was deliberately chosen to illustrate that this diffraction may
arise when the size of the free space EFS approaches or
exceeds the size of the first Brillouin zone. The problem
would be avoided if the NIR could be designed at a fre-
quency such that the size of the free space EFS was suffi-
ciently small. For the case of the square lattice with lattice
constanta, this yields a rough bound on the normalized fre-
quency asva/2pc,0.5. Since the lattice arrangement and

FIG. 1. sColor onlined A hypothetical reciprocal space represen-
tation of a flat slab of a square lattice PC sandwiched between two
semi-infinite regions of free space. The equifrequency surfaces for
each medium are shown as circles. Wave vectors are shown as thin
black arrows, and group velocities are shown in thick red arrows.
The dotted square encloses the first Brillouin zone of the PC, and
the vertical dashed lines indicate phase-matching conditions.
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spacing also play a part in diffraction, a more specific bound
would only be appropriate for each specific case.

Moreover, inspection of Fig. 1 shows that the effective
index of the 2DPC in this example is within the range −1
,neff,0. However, it is easy to see thatneff=−1 requires the
EFS of the PC to have the same radius as that of free space.
This equality implies that the normalized frequency is lim-
ited to va/2pc,0.5, which happens to coincide with the
previously stated result regarding diffraction.

The origin of high orders of diffraction and the range of
effective index values are hence intimately connected with
the operating frequency. As has been discussed, low frequen-
cies are more suitable for practical situations. However, it is
difficult to design PCs with cylindrical rods which avoid
these deficiencies. Moreover, a negative effective index in
such 2DPCs is necessarily found in the higher-order bands,
which makes it particularly difficult to redesign dielectric
PCs at lower frequencies without altering the shape of the
band structure and destroying the negative index behavior.

A simple method to avoid high orders of diffraction is to
operate within the first band andnecessarilyaway from theG
point. Using a square lattice PC, a negative angle of refrac-
tion can be found in the first band about theM point.5,7

However, this places a restriction on the lattice orientation;
the normal to the PC interface must be in theGM direction.
For a square lattice PC, this implies that only parallel inter-
face slabs are possible; for example, a 45° prism would re-
quire one of the normals to be in theGX direction. Equally
important is the fact that the NIR region is also less isotropic,
due to the fashion in which the band structure is rounded at
the Brillouin-zone edges. These issues make this design a
more challenging candidate for practical devices.11

This section has shown that there are a few concerns that
must be addressed if PCs are to be consideredpractical me-
dia which exhibit an effective NIR. For example, the re-
sponse of the bands exhibiting a NIR should be easily “tun-
able” in the design procedure with sufficient isolation from
the other bands. The higher orders of diffraction must be
eliminated by maintaining a low-frequency rangesi.e.,
va/2pc,0.5d. The crystal response must be as isotropic as
possiblescircular EFSsd. The EFSs should be centered about
the G point so that there is no limitation on the lattice orien-
tation. Finally, one should be able to couple efficiently from
free space to the desired NIR band.

In the following section a lattice basis is introduced which
allows for easier design of bands with a NIR. This basis is
used in place of the standard choice of cylindrical rods. A
simple design process is given, and solutions to thepractical
issuesraised above are provided.

III. METALLIC CROSS BASIS ELEMENT

A PC, which in the strict sense is an infinitely extended
periodic structure, is described by a Bravais lattice and a
crystal basis. Recent studies of negative refraction in 2DPCs
have used lattices with a cylindrical rod basis composed of
either dielectric or metal. The reciprocal lattice vectors dic-
tate the plane-wave composition of the Bloch wave function,
while the basis geometry and dielectric contrast determine

the magnitude of the plane-wave components. This defines
how the band structure is distorted from the light cone, and
as such will be the starting point in our study of a new basis
which can be used to address the practical issues mentioned
in Sec. II.

A. Basis geometry

The metallic cross basis is depicted in Fig. 2. The cross
arm length isL, each arm width isw, and the length of the
square unit cellsthe lattice constantd is a. The background
dielectric has relative permittivityer.

Only a two-dimensional square lattice is considered. Thus
the features of the PC are uniform in the third dimension.
This implies that the electromagnetic field may be decoupled
into two independent polarizations, TE and TM. This work
only considers the TEsH-polarizedd case, in which the single
magnetic-field component is perpendicular to the plane of
periodicity, and the electric field is confined to the plane.

Metal has been chosen for the cross basis to exploit an
important property. A perfect metal may be considered as
having a dielectric constant with an infinite real part. For a
given basis geometry, the extreme dielectric contrast between
the metallic basis and the background dielectric provides a
maximum amount of band distortion from that of free space,
which in turn aids in designing well-isolated negative index
bands. The use of metal also frees one to design the band
structure with a preferred geometryse.g., crosses in free
spaced, and thenscale the frequency response by replacing
the background dielectric without altering the shape of the
band structure. That is, whether the background is air, other
dielectric, or semiconductor, the dielectric contrast ratio be-
tween the metallic basis and the background remains practi-
cally unchanged. However, a possible downside in using a
metallic basis, especially for optical frequencies, is the lossy

FIG. 2. Schematic of the cross basis. The length of the cross arm
is L, the arm width isw, anda is the lattice constant. The remainder
of the unit cell is a background dielectric with relative permittivity
er.
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and dispersive nature of metals; this will be considered in
Sec. VI.

A PC with a metallic cross basis has another advantage
over the commonly studied cylindrical basis in that the band
structure for the former is quite different from the latter. In
essence, the magnitudes by which neighboring scatterers in-
teract with each other are given by the basis geometry; in the
case of metallic crosses this results in a qualitatively differ-
ent dispersion diagramsv ,K d with more bands that are spec-
trally isolated. Although in general many bands may have the
curvature which indicates a negative effective index, they are
most often “contaminated” by the presence of other bands in
the same frequency range. Thus the increased isolation pro-
vided by the cross basis in turn results in potentially more
bands with an isotropic negative effective index.

B. Band-structure calculation methods

A number of methods are available for calculating a
2DPC band structure, with the plane-wave expansion15 being
the most popular. However, the metallic cross basis and fine
spatial features are not suitable for use with this method. In
principle, a perfect metal could be approximated by a dielec-
tric with an infinite real part. The calculations could be im-
proved by using a Drude model, which in turn would require
the diagonalization of an enlarged matrix,16 consequently in-
creasing the memory requirements and computation time. Fi-
nally, the fine spatial features of the cross basis implies a
Fourier series in reciprocal space which decays slowly; a
large and potentially prohibitive number of plane waves
would be required in the expansion. Hence, the plane-wave
expansion method is not suitable for calculating the band
structure of our 2DPC.

The finite difference time-domainsFDTDd method17 was
used to compute all band structures considered in this work.
A unit cell of the square lattice PC was discretized into a
50350 grid. A value of relative permittivity was assigned to
every cell. The regions of perfect metal were defined by
setting all components of the electric field within and tangen-
tial to the metal equal to zero. A broadband source was ap-
plied by exciting the magnetic field at a point in the unit cell
with a temporal Gaussian profile. Periodic boundary condi-
tions were applied, with opposite pairs of boundaries related
by their respective components of a chosen Bloch wave vec-
tor K .

The band structure was calculated by running many simu-
lations, each defined by a different Bloch wave vector. For
each Bloch wave vector, the spectrum of the simulated
steady-state time series would give the mode eigenfrequen-
cies. Usually, the fast Fourier transformsFFTd would be used
to find this spectrum. However, a long time series would be
needed to accurately calculate the eigenfrequencies and pro-
vide the fine spectral resolution to resolve closely spaced
modes. When calculating an EFS with many wave vectors,
the overall simulation time could be extremely long.

The eigenfrequencies can also be found from a much
shorter time series. The matrix pencilsMPd method18–20 can
perform a total least-squares estimate of the frequencies of a
short time series. For brevity, we refer the interested reader

to a short review of the MP method in Ref. 20. The simula-
tion need only be as long as a few cycles of the lowest
anticipated frequency. A combination of short FDTD simula-
tions and MP method was used here to calculate full band
structures and EFSs in only a few minutes, as compared to
hours.

IV. DESIGN PROCEDURE

The design procedure for this metallic PC is fairly simple.
The infinite dielectric contrast of the perfect metal allows
one to engineer the band structure with only the basis geom-
etry. That is, the shape of the band structure is independent
of the background dielectric. After the design of the band-
structure shape has been finished, a background dielectric is
chosen to scale the designed negative index band to the de-
sired lower operating frequency range, without disrupting the
chosen band shape. This scaling procedure is crucial in
avoiding high orders of diffraction and achievingneff=−1.

A. Band engineering

The first stage in designing a NIR band is to create the
desired downward band curvature, regardless of the fre-
quency range or band number. This step involves choosing
the two free parameters in the cross geometry,L andw. For
very small values of both parameters, the band structure is
only slightly perturbed from a folded light cone. As the val-
ues of these parameters are increased, the bands may change
curvature, flatten out, and shift in frequency. This occurs in
any 2DPC, yet the band structure of a metallic cross basis
and a rod basis change in quite different ways. For narrow
crossesssmallwd, there exists a significant range of values of
the cross lengthL that results in one or even two high-order
bands with the correct curvature and isolation, and thus an
effective NIR.

It is difficult to give a full quantitative description for this
increased isolation in the band structure. However, concepts
from the plane-wave expansion method15 can be used to il-
lustrate how the basis geometry affects the band structure. In
particular, the method requires the Fourier series of the re-
ciprocal of the dielectric function. If one were to consider a
simple model of a perfect metal as a dielectric with its real
part of the permittivity approaching infinity, the components
of this series for the crosses would be

e−1sGd =
1

er
HdG,0 −

Lw

a2 sincsGxL/2dsincsGyw/2d

−
Lw

a2 sincsGxw/2dsincsGyL/2d

+
w2

a2 sincsGxw/2dsincsGyw/2dJ ,

whereer is the relative permittivity of the background dielec-
tric, G=sGx,Gyd are the reciprocal-lattice vectors, and
sincsxd=sinsxd /x with sincs0d=1. For the narrow crosses
sw!Ld considered in this work, this function is most appre-
ciable on theGx, Gy axes, and the rate of decay along each
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axis is much less than that due to the Fourier series compo-
nents of a cylindrical rod.15 It seems that there is much more
complex scattering with the cross basis, and thus a very dif-
ferent and incidentally isolated band structure.

After designing the band-structure shape, the frequency
range of the chosen negative index band can be scaled to the
desired range belowva/2pc,0.5. If f0 is the center fre-
quency of the negative index band, andf08 is the desired
center frequency, then the dielectric backgrounder may be
chosen from the relationf08= f0/Îer. Adding the dielectric in
this way will help avoid the high orders of diffraction for a
device manufactured from this PC.

The efficient combination of FDTD and the MP method
was used to calculate the band structures for many cross
geometries. An example which demonstrates the proper band
curvature and isolation is shown in Fig. 3. The cross dimen-
sions areL=0.52a, w=0.04a, and the background dielectric
is er =12 se.g., Si at infrared frequenciesd. The bottom edge
of the free space light cone is also indicated in the figure by
dashed lines. The background dielectric was chosen to en-
sure that the seventh band is scaled to a frequency lower than
the first folding of the light cone. This example demonstrates
that two high-order bands with a downward curvature about
theG point are spectrally isolated, i.e., only one band resides
in the spectral range it occupies. The fourth bands0.258
øva/2pcø0.281d and seventh bands0.354øva/2pc
ø0.380d seem to be candidates which have a region of nega-
tive effective index of refraction. However, the modes of the
fourth band are incompatible with those of free space. This
will be discussed later in this section, and so, for the time
being, the fourth band will be ignored.

The EFSs for the seventh band are shown in Fig. 4. The
gradient for any Bloch wave vector points inward toward the
G point for all frequencies with circular contours. The circles
indicate an isotropic response, and therefore allow for the
definition of an effective index in the sense of Snell’s law. It
is interesting to note that the contours are very close to
circles for most of their frequency range. This is mainly be-

cause a large amount of band folding has occurred due to the
initial high frequency of the bandswithout the dielectric
backgroundd which has resulted in a very circular irreducible
zone representation. It is interesting to note that here such a
circular EFS was obtained without requiring the use of a
triangular lattice. As stated earlier, and as is evident from
Fig. 4, scaling down in frequency by introducing the back-
ground dielectric has not affected the results adversely.

The band structures for the TM polarization were also
calculated. However, the results were similar to the band
structures of PCs with a metallic cylindrical basis.16 That is,
the most interesting feature is a band gap from zero fre-
quency to the first band, which is expected for PCs with the
electric field polarized in the direction of the continuous
metal basis. Unfortunately, the combination of negative in-
dex band curvature and band isolation was not present to the
same degree as with the TE modes for any of the cross ge-
ometries considered. There seems to be no significant advan-
tage in using the TM modes of the metal cross basis PC for
the purposes of negative refraction.

B. Range of effective index values

The effective index for the example design ofL=0.52a,
w=0.04a, ander =12 is shown in Fig. 5. The effective index
of refraction is shown as a function of frequency for both the
GX and GM directions. For each direction, the effective in-
dex was calculated by using thesv ,K d pairs from the band
structure. In this approach, the effective index is the ratio of
the magnitude of the Bloch wave vector to the wave number
of free space at the same frequency.6 The medium is isotro-
pic in the frequency range over which the effective indices in
the two principal directions are approximately the same. This
will be quantified later in this section. Also note that Fig. 5
shows that this design hasneff=−1 atva/2pc=0.361.

C. Negative index bandwidth

Although a particular design of a negative index band was
shown above, the ease with which the band structure may be
designed will now be discussed.

FIG. 3. Band structure of a square lattice 2DPC with perfect
metallic crosses of dimensionsL=0.52a, w=0.04a. The field isH
polarized and the background dielectric iser =12. The bottom edge
of the folded light cone is shown in dashed lines.

FIG. 4. sColor onlined Equifrequency surfaces for frequencies
within the seventh band of the dispersion relations0.354
øva/2pcø0.380d depicted in Fig. 3.
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The calculated effective indices along the two principal
directionsGX and GM were discussed earlier. The index is
considered to be isotropic if the normalized difference of the
indices in the two principal directions is less than 0.5%. That
is, 2unGX−nGMu / snGX+nGMd,0.005. If vh is the highest fre-
quency andvl is the lowest frequency which satisfy this
relation, then the definition of the effective index bandwidth
sBWd is taken as BW=2svh−vld / svh+vld.

The bandwidth of the seventh band as a function of the
cross lengthL for various widthsw is shown in Fig. 6. One
may design for a given bandwidth by simply consulting a
graph such as Fig. 6 in order to choose the appropriate cross
dimensions. The designer need not worry about the geom-
etry’s effect on the final operating frequency range.

Figure 6 shows that the greatest bandwidth is found for
the thinnest crosses. For a given cross with narrow widthw,
the qualitative progression due to changing the cross lengthL
is as follows. A small length cross has a band structure simi-
lar to a slightly perturbed folded light cone, and as such has
no spectrally isolated negative index bands. As the length of
the cross is increased, the bands flatten out and eventually

some become isolated in some spectral regions. This effect
seems to be due to the cross geometry, as the same degree of
isolation of the bands is not as easily found for a rod basis.
WhenL reaches a threshold value, the seventh band becomes
isolated in frequency and is very circular around theG point,
giving rise to the isotropic bandwidths shown in Fig. 6. AsL
is further increased, the bandwidth increases to a maximum,
and then the band tends to flatten out, and the bandwidth of
isotropic response decreases. For sufficiently largeL, the
eighth band moves downward in frequency into the same
spectral range as the seventh band, and causes a sharp de-
crease in the bandwidth. This is indicated by the steep slopes
for largeL.

D. Mode compatibility with free space and coupling to the PC

So far, our approach has been to use the capabilities of the
perfect metal cross basis to easily generate regions of nega-
tive effective index. We then utilized the background dielec-
tric to scale down the frequency response, hence making the
use of higher-order bands more practical. There is one re-
maining consequence of using higher-order bands that must
now be examined. As stated earlier and shown in Fig. 3, both
the fourth bands0.258øva/2pcø0.281d and the seventh
band s0.354øva/2pcø0.380d have the correct curvature
and isotropic response for our purposes. However, the mode
pattern of the fourth band along theGX direction isnot suit-
able for coupling from free space. This is not apparent from
the information presented in the dispersion relation; the
mode patterns must be examined, and are shown in Figs.
7sad–7sdd. The pattern in Fig. 7sad has odd symmetry about
the y=0 axis, whereas plane waves have even symmetry
about the axis defined by their propagation wave vector.
Thus, free space plane waves cannot couple to the modes of
the fourth band along theGX direction.21,22 Hence the fourth
band, despite its isotropic response and downward curvature,
cannot be assigned an effective NIR. On the other hand,
there is no such problem with the seventh band, as indicated
by Figs. 7scd and 7sdd.

V. PRISM REFRACTION SIMULATION RESULTS

The negative effective index was verified with the refrac-
tion of a Gaussian beam through a 2DPC. The valuesL
=0.52a, w=0.04a, ander =12 were again used for our 2DPC
with metallic cross basis which was shaped into a prism hav-
ing neff=−1. The 45° prism was simulated with the FDTD
method,17 as shown in Fig. 8. Perfectly matched layers were
used to truncate the computational domain. Note that the
right-hand edge of the prism is matched and truncated by the
absorber, so that retroreflections do not obscure the refracted
wave; this allows the refracted beam to have sufficient time
to settle into a steady-state condition.23 A source plane par-
allel to the bottom edge of the figure was excited with a
Gaussian spatial profile of sufficient width such that there
was little spread in the wave-vector components. This profile
was modulated with a sinusoid of frequencyva/2pc
=0.361. The beam was normally incident on the lower hori-
zontal face of the prism, along theGX direction. The wave

FIG. 5. sColor onlined The calculated effective index of refrac-
tion as a function of normalized frequency.

FIG. 6. sColor onlined Isotropic bandwidth of the negative index
sseventhd band as a function of the overall cross lengthL. Several
cases of cross widthw are shown.
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propagated through the PC, and was then incident at 45° on
the angled face. The negative refraction at this interface is
easily seen in the figure, and, more importantly, it is also
clear that no higher orders of diffraction are present. This
device would not have been possible if it was manufactured
from a PC with band structure depicted in Ref. 5 with a
downward curvature about theM point, since in that case the
normal to the interface would have been along theGX direc-
tion and as such no Bloch mode solution exists.

VI. SUMMARY

A 2DPC with a metallic cross basis was studied in order
to design a structure with an effective NIR. A combination of
the FDTD and MP methods was used to efficiently investi-
gate the required geometry of the metallic crosses which pro-
duced an isotropic and wide bandwidth NIR behavior. The
design has the benefits of using a simple square lattice and
small filling fraction of metal, a large range of effective NIR
valuessincluding −1d, low operating frequency, and correct
coupling to free space modes. This metallic cross PC allows
for flexible design of practical devices, and the important
issue of avoiding high orders of diffraction is easily resolved.
The structure is simple enough that it should be possible to

fabricate at the infrared frequency range. However, the ef-
fects of metallic losses and dispersion must then also be in-
cluded in our analysis, where so far we have only assumed
perfect conductors.

The band structures for our 2DPC with metallic cross ba-
sis, where the metal now has the Drude dispersion24

esvd = 1 −
vp

2

vsv − igd
,

were also studied. It was found that the frequency depen-
dence of the Drude model only slightly changed the band
structure when micron-scale wavelengths were considered.
As an example, when we used values typical of goldsi.e.,
vp=9 eV and g=0.01vpd, the NIR range was 0.3558
øva/2pcø0.3785, and the valueneff=−1 occurred at
va/2pc=0.360. These results are quite similar to those pre-
sented in Sec. IV which only considered perfect metals. For
the same normalized cross dimensions, a device withneff=
−1 can be constructed atl=10.6mm sCO2 laser lined with
a=3.82mm, L=1.99mm, and w=153 nm. The damping
constantg does not seem to dramatically affect the band
structure, although it would define an effective path length
within the PC device. This path loss is somewhat minimized
due to the small filling fraction of the metal.

FIG. 7. sColor onlined Mode patterns ofsad the fourth band withkxa=101°, kya=0°, va/2pc=0.270; sbd the fourth band withkxa
=60°, kya=60°, va/2pc=0.270; scd the seventh band withkxa=130°, kya=0°, va/2pc=0.361; sdd the seventh band withkxa=92°, kya
=92°, va/2pc=0.361. The magnitude of the magnetic field is shown. A black arrow in each unit cell indicates the direction of the Bloch
wave vector.
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Two different methods may be used to fabricate a 2DPC
metamaterial with these dimensions. The first method would
be to etch the cross features into a slab of dielectric or semi-
conductor substratessuch as Sid, and then fill the voids with

the metal. The features would have to be deep enough so that
the cross section of a beam would be scattered by columns
with effectively uniform features in the third dimension.
However, the etching of deep, narrow features may be diffi-
cult, so a simpler method may be a monolithic planar pro-
cessing approach. The metamaterial could be built up in a
periodic fashion by planar deposition of the metallic cross
layers, separated by a thin dielectric or semiconductor spac-
ing layers. To verify the validity of the latter approach, band
structures were calculated for three-dimensional unit cells
composed of thin metal crosses suspended in a dielectric of
er =12. The heights of the cells were increased up toa/6, and
the phase differences between the cell faces in the third di-
mension were held at zero. The band structures were essen-
tially unchanged from the results presented earlier for the
2DPC in Fig. 3. The periodicity in the third dimension was
kept small enough so that the structure was effectively uni-
form.

A flat lens is an important device that can be made with
negative index metamaterials. The wide range of indices
available with the metallic cross basis makes this structure
attractive. In particular, the example given in this paper had
neff=−1, which is one of the requirements for a perfect lens,1

and such a value has not been possible with other PC de-
signs. However, the sub-wavelength resolution of a perfect
lens requires careful regeneration of the evanescent compo-
nents of the source, and further investigation into this regen-
eration with the metal cross PC is required.
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FIG. 8. sColor onlined FDTD simulation of negative refraction
in a prism made of 2DPC with metallic cross basis. A Gaussian
beam was normally incident on the bottom face of the prism. The
beam exits the prism with a negative angle of refraction and out to
the left edge of the figure.
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