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A negative effective permeability is shown to exist at infrared frequencies in a three-dimensional collection
of polaritonic spheres. This is demonstrated by an effective medium theory which relates the Mie resonances
of the constituent spheres to the bulk response of the composite. The derived permittivity and permeability are
shown to be isotropic. The results are verified by a comparison with multiple-scattering photonic band calcu-
lations. The existence of an anomalous dispersion region with a negative group velocity and the appropriate
signs associated with the imaginary parts of the permittivity and permeability are also discussed.
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I. INTRODUCTION

The recent interest in negative index of refraction
metamaterials1 and their exciting applications, such as the
perfect lens,2 have revived research in the design of artificial
dielectrics. The initial negative index metamaterials paired a
negative effective permittivity with a negative effective per-
meability. A negative index has also been demonstrated in
loaded transmission line media,3,4 and a related effect has
been found to occur in photonic crystals.5,6 Experimental re-
sults verifying negative refraction in the GHz range have
also been reported.7

Despite the excellent progress of research on these
metamaterials at microwave frequencies, we are interested in
designing simpler structures for use at infrared and optical
frequencies. For instance, the split-ring resonators �SRRs�,8
which provide a negative effective permeability, have a de-
tailed geometry which becomes difficult to fabricate on a
micron scale. Moreover, an SRR only contributes to the
negative permeability when the magnetic field is polarized
along its axis, meaning that a metamaterial with an isotropic
negative permeability would require three orthogonal orien-
tations of SRRs. In contrast, photonic crystal designs5,6 may
be more simple geometrically, but the negative refraction
effect is different. In this case, the required Bragg scattering
results in practical difficulties such as anisotropy, mode cou-
pling mismatches, and high-order diffraction.6 Additionally,
the fact that the wavelength is on the order of the lattice
constant means that these PCs can only be used in a limited
way for device miniaturization. Lastly, the transmission line
media seem to be unsuitable for the infrared because of the
need for lumped components or intricate printed loading el-
ements.

An alternate method of producing a negative permeability
is to use the Mie resonances of dielectric spheres. Spheres
with large values of permittivity have leaky cavity reso-
nances at frequencies where the corresponding wavelength
in the ambient medium remains much larger than the size of
the spheres. A large collection of such spheres can be de-
scribed by an effective permeability; a strong enough reso-
nance creates a negative permeability. The effective permit-
tivity and permeability of arbitrary spheres was considered
by Lewin.9 This work was extended recently in reports of

negative index metamaterials that used interpenetrating ar-
rays of magnetodielectric10 and ferroelectric11 spheres. Simi-
lar effective medium theories also have been reported.12,13

Finally, just prior to the submission of this paper we have
become aware of the publication of Ref. 14, which is similar
to the present report, and verifies some of our results shown
here and elsewhere.15 There are also other reports of a nega-
tive index of refraction that rely on Mie resonances, but ei-
ther depend solely on the electric dipole resonance,16 or re-
quire quadrupole resonances.17

In a report independent of the previous references,
O’Brien and Pendry18 showed that a two-dimensional array
of ferroelectric rods has a negative effective permeability in
the GHz range when the magnetic field is polarized along the
axes of the rods. It was subsequently shown that polaritonic
rods can be used to extend this concept to the infrared in two
dimensions.19 Although the underlying physics is the same,
these reports used an alternate method to find the effective
media values. The validity of this method is discussed later
in this paper.

We report a three-dimensional collection of polaritonic,
nonmagnetic spheres with a negative effective permeability
at infrared frequencies. In addition, this effective permeabil-
ity is shown to be isotropic for modest filling fractions. Sec-
tion II summarizes the simple yet rigorous effective medium
theory used to calculate the effective electromagnetic param-
eters. Section III presents the effective permeability and per-
mittivity calculated for a collection of LiTaO3 spheres. A
scattering matrix technique is then used to calculate the band
structure of an equivalent periodic structure, which further
verifies the results of the effective medium theory. We com-
ment on the resulting negative group velocity, and contrast
the effective media theory with other methods. Finally, we
summarize the results in Sec. IV.

II. EFFECTIVE MEDIUM THEORY

Consider a single isolated dielectric sphere of radius r0
and relative permittivity �r=n2. A plane wave, which has a
magnetic field Hinc=H0 exp�ik0z�ŷ where k0=� /c, is inci-
dent on the sphere. The scattered field can be decomposed
into a multipole series,20 with the 2m-pole term of the mag-
netic field proportional to
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bm =
�m�nx��m� �x� − n�m�x��m� �nx�
�m�nx��m� �x� − n�m�x��m� �nx�

, �1�

whereas the 2m-pole term of the scattered electric field is
proportional to

am =
n�m�nx��m� �x� − �m�x��m� �nx�
n�m�nx��m� �x� − �m�x��m� �nx�

. �2�

Here x=k0r0, and �m�x� and �m�x� are the Riccati-Bessel
functions,21 and the primes indicate differentiation with re-
spect to the argument. Only the b1 coefficient, which is the
strength of the magnetic dipole response, will be of interest
when considering the effective permeability; only the a1 term
will be needed to find the effective permittivity.

Near the lowest resonant frequency of b1, the sphere is
equivalent to a magnetic dipole. The dominant contribution
to the scattered magnetic field is then due to only the dipole
term,

Hsca =
3i

2
H0b1

eik0r

k0r
��ŷ · �̂��̂ + �ŷ · �̂��̂�

= −
3i

2
H0b1

eik0r

k0r
r̂ � �r̂ � ŷ� , �3�

in the far field.20 If the free-space wavelength is much larger
than the diameter of the sphere, the sphere may be replaced
conceptually by a radiating magnetic dipole of moment m.
The radiated field must then match the standard far-field ex-
pression of dipole radiation,22

Hdipole = −
k0

3

4�

eik0r

k0r
r̂ � �r̂ � m� . �4�

Equating �3� and �4� provides the equivalent magnetic dipole
moment of a single dielectric sphere, in terms of its b1 scat-
tering coefficient.12 The induced magnetic dipole moment is
related to the incident wave by m=�mHinc�z=0�, where �m

is the magnetic polarizability.
The effective permeability 	r

eff must describe the response
of a large collection of such magnetic dipoles. This is done
by averaging the fields in the long-wavelength limit. The
magnetic polarizability can be related to the effective perme-
ability by using the Clausius-Mossotti equation,22

�m =
3

N
�	r

eff − 1

	r
eff + 2

� , �5�

where N is the volume density of the dipoles. The filling
fraction f of the composite is f =4�Nr0

3 /3, and should be
kept to modest values. The effective permeability is then

	r
eff =

k0
3 + 4�iNb1

k0
3 − 2�iNb1

. �6�

Similarly, the effective permittivity �r
eff is due to the scat-

tered electric dipole term a1, and is given by

�r
eff =

k0
3 + 4�iNa1

k0
3 − 2�iNa1

. �7�

Equations �6� and �7�, along with �1� and �2�, determine the
effective electromagnetic parameters in the long-wavelength
limit. The forms of �6� and �7�, also found in Ref. 13, are
equivalent to the formulation of Lewin9 and other
reports.10,11

III. NEGATIVE PERMEABILITY

A. Magnetic resonance of polaritonic spheres

The magnetic dipole response is usually weak. This can
be driven into resonance, however, by using materials with a
large permittivity, such as ferroelectrics.11,18 However, their
extreme permittivity drops off before infrared frequencies.
Instead, the polaritonic resonances of crystals, or reststrahlen
region, can serve this purpose in the infrared.19 The large
dielectric permittivity of the spheres also aids in scaling the
resonances into the long-wavelength limit. Polaritonic mate-
rials have a relative permittivity

�r��� = ��
��1 +
�L

2 − �T
2

�T
2 − �2 − i��

� , �8�

where ��
� is the high-frequency limit of the permittivity, �T

is the transverse optical phonon frequency, �L is the longi-
tudinal optical phonon frequency, and � is the damping
coefficient.23 These parameters are related by the Lyddane-
Sachs-Teller relation �L

2 /�T
2 =��0� /��
�, where ��0� is the

static permittivity. We choose to use the crystal LiTaO3, the
same as considered in Ref. 19. The parameters used in our
calculations are ��0�=41.4, ��
�=13.4, �T /2�=4.25 THz,
�L /2�=7.46 THz, and � /2�=0.15 THz. It should also be
noted that these values, which are taken from experimental
results,24 do not match those stated in Ref. 19; the latter
frequencies are a factor of 2� too large.

We choose spheres of LiTaO3 because of its large static
permittivity ��0�. It is the large dielectric constant, and not
necessarily the material resonance, which drives a strong
resonance in the magnetic dipole moment of the spheres, and
makes it easier to create a negative effective permeability.

The effective permeability of a collection of LiTaO3
spheres is shown in Fig. 1�a�, and the effective permittivity is
shown in Fig. 1�b�. The radius of the spheres is 4 	m. The
filling fraction is 26.81%, which corresponds to the periodic
structure that will be used later to verify these effective pa-
rameters. The free-space wavelength at the permeability
resonance exceeds the diameter of the spheres by a factor of
10.6, which affirms the validity of the long-wavelength ap-
proximation used to calculate the effective medium values.

The resonance in the effective permeability shown in Fig.
1�a� at 3.53 THz is below the transverse phonon frequency
��T /2�=4.25 THz� and happens to be, as expected, in the
range where the material permittivity grows quite large. The
effective permeability becomes negative just above this reso-
nance. The effective permittivity shown in Fig. 1�b� has a
very weak resonance at 3.9 THz. In addition, a strong reso-
nance and negative permittivity occurs near 6.77 THz �not
shown in Fig. 1�b��, although at such high frequencies the
long-wavelength approximation begins to break down.

The imaginary parts of both the calculated effective per-
meability and permittivity are always positive. This indicates
attenuation, either due to material losses or reactive energy
storage. Interestingly, a number of researchers have calcu-
lated the effective permittivity and permeability for other
metamaterials, and in some cases have found a negative
imaginary permittivity,18,19,25 which on its own would indi-
cate gain from a passive structure. Nonetheless, the funda-
mental difference between our results and others is in the
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method of calculation of the effective medium values. In the
other reports, the permeability and permittivity are found
from calculations of the effective index and reflectance. The
index is taken from band structure calculations, and the re-
flectance is calculated for a slab of finite thickness L. How-
ever, the effective media values should not depend on L. This
assumption makes the results ambiguous and perhaps leads
to the negative imaginary permittivity in the aforementioned
references. On the other hand, the direct calculation using
analytical field expressions and the Clausius-Mossotti equa-
tion, applied here, results in the strictly positive imaginary
values shown in Figs. 1�a� and 1�b�.

B. Isotropy and verification

The effective permeability and permittivity that have been
found are only strictly true in the long-wavelength limit. The
actual arrangement of the spheres, particularly a periodic lat-
tice arrangement, will have little impact on the effective dis-
persion, resulting in isotropic effective values. This assertion
can be verified by a comparison with a full multiple scatter-
ing approach, which takes into account the interactions be-
tween the spheres, as well as higher multipole contributions.
The previous discussion on the imaginary parts of the effec-
tive values also reveals the need for further verification.
Therefore, we performed photonic crystal band calculations
using modifications of the code MULTEM2 from Ref. 26.

This program finds the complex band structure of a three-
dimensional photonic crystal by calculating the scattering
within a two-dimensional plane of spheres, and then uses
Bloch’s theorem along the third dimension of periodicity to
calculate the longitudinal dispersion relation. The mode fre-
quency is the independent variable. A scattering matrix ap-
proach relates the fields on the two ends of a unit cell in the
direction of propagation, according to

A2
+ = T21 · A1

+ + R22 · A2
−,

A1
− = R11 · A1

+ + T12 · A2
−, �9�

where Ai
± are column vectors representing the components of

the fields, as defined in Fig. 2. The Tij and Rij are transmis-
sion and reflection matrices from the jth to ith plane, and
include all of the information regarding the lattice, sphere

FIG. 3. �Color online� The eigenfrequencies of a simple cubic
lattice of LiTaO3 spheres, as a function of the real part �a�, and
imaginary part �b� of the Bloch wave vector. The lattice constant is
a=10 	m and the radius of the spheres is r0=0.4a.

FIG. 1. �Color online� The effective relative permeability �a�
and permittivity �b� of a collection of LiTaO3 spheres. The radius of
the spheres is 4 	m. The filling fraction is 26.81%.

FIG. 2. �Color online� A unit cell of the simple cubic crystal,
indicating the components of the scattered waves. This figure as-
sumes propagation along the �X direction.
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size, sphere and host dielectrics, frequency, and transverse
wave vector. The Bloch condition is imposed along the di-
rection of propagation, so that A2

±=exp�ika�A1
±, where k is

the longitudinal component of the Bloch wave vector, and a
is the unit cell size. This code then solves the eigenvalue
problem

eika� I 0

R11 T12
��A1

+

A2
−� = �T21 R22

0 I
��A1

+

A2
−� , �10�

where I is the identity matrix. The only approximations are
in the angular momentum cutoff in the spherical scattering
coefficients and the number of reciprocal lattice vectors
taken in each two-dimensional plane of spheres. We have
modified the code to accommodate the dispersive polaritonic
materials of the spheres.

A simple cubic lattice is chosen to verify the effective
medium approach. The lattice constant is a=10 	m, and the
LiTaO3 spheres have a radius of r0=0.4a. This corresponds
to a filling fraction of 26.81% �using N=1/a3� which is the
same value used in our effective medium approach. The
Bloch wave vector was calculated along the �X, �M, and �R
directions. The results are shown in Fig. 3�a�. These are com-
pared with the effective photon dispersion, which is given by
the relation

k = k� + ik� =
�

c
	�r

eff���	r
eff��� , �11�

in the long-wavelength limit, and ensuring that k�
0. The
isotropic response of the composite is verified by the closely
matching curves. Note that the two nondegenerate modes for
the �M direction can be distinguished on careful inspection,
although the code does not converge well for one of these
modes at the center of the resonance. At frequencies slightly
beyond the range of the figure, the long-wavelength approxi-
mation starts to break down and the curves begin to differ.
The comparison in Fig. 3�a� indicates that the calculated ef-

fective parameters indeed do describe the wave propagation
in the composite.

The main interesting feature in the band structure, which
is the “kink” centered at �a /2�c=0.118, is due to the reso-
nance in the effective permeability. This is an anomalous
dispersion region, in which the group velocity is negative,
vg=�� /�k�0. A negative group velocity means that the
group delay of a pulse traveling through the structure is
negative, i.e., the peak of the output pulse precedes the peak
of the input pulse.27 This does not, however, violate causal-
ity, as long as passive media display attenuation in the
anomalous dispersion region.4,28 The attenuation of the
present composite is shown in Fig. 3�b� as the imaginary part
of the Bloch wave vector, which manifests itself as a
pseudogap. Note that this is an entirely different effect than a
Bragg resonance, and as such the phase shown in Fig. 3�a�
varies in the gap.

IV. SUMMARY

We have presented a metamaterial composed of polari-
tonic spheres which has a negative effective permeability at
infrared frequencies. The three-dimensional, isotropic mag-
netic response is controlled by the size, density, and dielec-
tric properties of the spheres. This composite has a very
simple structure, and is a viable alternative to SRRs. It may
also be used to extend paramagnetic and diamagnetic mate-
rials to optical frequencies.
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