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Backward wave propagation in left-handed
media with isotropic and anisotropic

permittivity tensors
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The backward-wave phenomenon in an isotropic medium is investigated from a purely wave propagation point
of view. The functional form for the index of refraction necessary to produce such behavior is derived using the
condition that the phase and group-velocity vectors are antiparallel. It is shown that, in the case considered,
the backward-wave propagation can be attained only in a medium where the index is negative. A more general
case is then considered where the angle between the phase velocity and group velocity is allowed to vary be-
tween 90° and 270°. It is shown that such behavior requires propagation through an anisotropic medium where
at least one of the axes has a negative index and the general form of the index along each of the three principal
axes is derived. The condition that the group velocity must be positive in the transmission passband is then
used to obtain the required minimum dispersion for a medium with negative index for both the isotropic and
the anisotropic cases. © 2006 Optical Society of America
OCIS codes: 160.1190, 260.1180, 260.2110, 350.5500.
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. INTRODUCTION
ecently, media that exhibit a negative index of refraction
ave been the topic of extensive work.1–4 This is due to
he development of the first negative index medium by
mith et al.5 and the subsequent explosion of publications
n the subject that followed. An important characteristic
f negative index media is that the wave vector k, the
lectric field vector E, and the magnetic field vector H
orm a left-handed triplet, a relationship that has led
hem to be dubbed left-handed media (LHM). The afore-
entioned relation among the three vectors implies that

he Poynting vector �S� and the wave vector �k� of a wave
ropagating in a LHM are necessarily antiparallel, which
s the defining characteristic of the so-called backward
ave. Therefore, LHM and consequently media with
egative permittivity and permeability (negative index)
re in essence backward wave media; but what about the
everse? Does an antiparallel relationship between the
oynting vector and the wave vector imply a unique nega-
ive index of refraction? And if so, then what would be the
unctional form of this index?

In this paper, the backward-wave phenomenon will be
tudied from a purely three-dimensional wave propaga-
ion point of view. To do so, it is convenient to restrict our
ttention to propagation through a transmission pass-
and (i.e., away from regions of anomalous dispersion). In
uch a passband, the group velocity and Poynting vector
oint in the same direction and the problem can be for-
ulated in terms of the group velocity instead of the
oynting vector. Furthermore, it is also convenient to sub-
titute the propagation vector with the phase velocity. It
hould be noted that these substitutions are appropriate
n the context of the present work, since we are only con-
0740-3224/06/112377-6/$15.00 © 2
erned with the directions of the vectors and not necessar-
ly their magnitudes.

Our analysis of backward-wave propagation and its re-
ation to the index of refraction will be presented as fol-
ows. In Section 2 the index of refraction necessary to pro-
uce backward wave behavior is derived using the
ondition that the group and phase velocities are perfectly
ntiparallel (the angle between them is 180°). It is shown
hat this index is necessarily negative and isotropic. The
ondition that the phase and group-velocity vectors are
erfectly antiparallel is then relaxed and the case is con-
idered where the two vectors have at least one antipar-
llel component. In this case the medium is necessarily
nisotropic requiring a negative index along at least one
rincipal axis. Moreover, constraints on the functional
orm of the index of refraction are obtained using the con-
ition that the group velocity must be positive in the
ransmission passband. Anisotropic uniaxial right-
anded media (RHM) and LHM are further examined in
ection 3 where the angles between the phase and group
elocities under certain conditions are calculated. Section
contains our final thoughts and conclusions.

. BACKWARD WAVES
. Perfect Backward Waves
o examine the backward-wave phenomenon we start
ith a purely three dimensional wave propagation point
f view, considering an arbitrary medium with phase in-
ex n�k�. The challenge is to find a functional form for the
hase index that results in the propagating wave exhibit-
ng backward behavior. To find this functional form, we
egin with a known property of backward waves. That is,
006 Optical Society of America
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he phase and group velocities of such waves must be an-
iparallel, where the phase and group velocities are given
y

vp =
c0

n�k�
k̂, �1�

vg = �k

c0k

n�k�
. �2�

ere, co is the speed of light in vacuum and k̂ is the unit
ector in the direction of propagation. In an arbitrary me-
ium where the relationship between the group velocity
nd phase velocity is not known, the two vectors can be
elated by

�vgx,vgy,vgz� = �dxvpx,dyvpy,dzvpz�, �3�

here the di �i=x ,y ,z� are arbitrary constants that ac-
ount for the differences in magnitude and direction be-
ween the components of the phase and group velocities.
ote that if any of the components of the phase velocity
re zero, Eq. (3) may not be valid. However, a new coordi-
ate system can always be defined in which the phase ve-

ocity has no zero components. For the case of a perfect
ackward wave medium, the angle between the phase
nd group velocities must be 180°. This condition has two
onsequences for Eq. (3). First, we must choose dx=dy
dz=d so that the vectors are collinear. Second, d must be
egative to ensure that the vectors are perfectly antipar-
llel. To enforce the fact that d must be negative, it will be
ritten in the form −�d�. Hence, Eq. (3) becomes

vg = − �d�vp. �4�

sing Eqs. (1) and (2) for the group and phase velocities
n Eq. (4) gives

�k

c0k

n�k�
= − �d�

c0

n�k�
k̂. �5�

he parameter d, as written in Eq. (5), is now an arbi-
rary constant that accounts for any difference in the
agnitudes of the two velocity vectors. It is interesting to

ote that the phase index n�k� that satisfies Eq. (5) will
esult in backward wave propagation for all frequencies.
owever, it should be noted that this result is purely
athematical in the sense that no physical medium cur-

ently exists that satisfies Eq. (5) for all frequencies. Set-
ing d=1 for simplicity, the solution to the above vector
ifferential equation is given by

n�k� = bk2, �6�

here b is an arbitrary constant with units of square
eters. The dispersion relation corresponding to this in-

ex is

��k� =
c0k

n�k�
=

c0

bk
. �7�

igure 1 shows the dispersion diagram calculated from
q. (7). The wave vector k in branch I of Fig. 1 is negative,

mplying a negative phase velocity. On the other hand,
he local derivative at any point on branch I is positive,
ignifying that the group velocity is positive everywhere.
n branch II the opposite is true. That is, at all points the
hase velocity is positive and the group velocity is nega-
ive. Hence, as expected, the index derived from Eq. (4)
ields backward wave behavior at all frequencies since
he phase and group velocities are antiparallel every-
here.
It is important at this point to determine which branch

n Fig. 1 presents a valid solution. Assume that the propa-
ating waves are generated by a fixed source located at
=0 and that the energy of the waves propagates away

rom the generator in the +r̂ direction. For this configura-
ion, the solution represented by branch I implies a group
elocity that propagates away from the source (+r̂ direc-
ion) and a phase velocity that propagates toward the
ource (−r̂ direction). The solution represented by branch
I, on the other hand, implies the opposite case with the
roup velocity propagating toward the source (−r̂ direc-
ion) and the phase velocity propagating away from the
ource (+r̂ direction). Since we have assumed propagation
n the passband, where the group and energy velocities
re the same, the solution in branch II directly violates
ur assumption that the energy of the wave propagates
way from the source. Therefore, the situation in branch
I is unphysical and does not present a valid solution.
his can also be seen as follows. Branch II represents the
ase of a negative group velocity. It has previously been
hown that in passive media the group velocity can be
egative only in the stop band.2,6,7 Hence, branch II is
gain unphysical since we are assuming propagation
hrough the passband of a passive medium. It should be
oted that branch I can be obtained only by choosing b
0 in Eq. (7). However, choosing b�0 is also the condi-

ion used to obtain a negative index of refraction in Eq.
6). Therefore, we must conclude that for the case consid-
red above, a negative index of refraction is a necessary
ondition for backward wave propagation. We may take
ote of the fact that the dispersion relation obtained
bove is in agreement with those derived for the dual of a
imple transmission line model.8 This model, which con-
ists of a series capacitor and a shunt inductor (instead of
customary series inductor and shunt capacitor), was the

tarting point for several of the first negative index media
eveloped to date.9,10 To our knowledge, this is the first
ttempt to derive these results from the full wave propa-
ation (3D) point of view.

ig. 1. (Color online) Dispersion relation for the index given in
q. (7).
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. Imperfect Backward Waves
n Subsection 2.A we considered a case where the phase
nd group-velocity vectors were perfectly antiparallel (the
ngle between them was 180°). To perform a more general
nalysis, the angle between the phase and group veloci-
ies should be allowed to have any value in the range of
0° ���270°. In other words, we should allow the dot
roduct of the unit vectors of the phase and group veloci-
ies to have any negative value. We will refer to these as
mperfect backward waves. For such a wave, although the
hase and group velocities are not antiparallel, they will
ave antiparallel components. Hence, the point of refer-
nce is once again Eq. (3), but now the di’s can no longer
ll be identical. In terms of the components of the group
nd phase velocities, from Eq. (3) we can write

vgi = divpi, �8�

here i=x ,y ,z. If we use the expressions of Eqs. (1) and
2) for the group velocity and phase velocity, Eq. (8) can be
ritten as

c0� 1

n�k�
−

k

n�k�2

�n�k�

�ki
�ki

k
= di

c0

n�k�

ki

k
. �9�

ith a little algebra Eq. (9) can be rewritten in the form

�1 − di�

n�k�
=

k

n�k�2

�n�k�

�ki
. �10�

he solution to the above differential equation is given by

n�k� = �i�k2��1−di�/2, �11�

here �i is an arbitrary constant. Equation (11) shows
hat for this imperfect backward wave the index can have
ifferent forms along each of the three principal axes,
hich is the case for an anisotropic medium. This will be

urther examined in Section 3 where it will be shown
hat, to obtain imperfect backward wave propagation, the
ndex along at least one of the axes must be negative.
hat is, we must have �i�0 for at least one of the solu-

ions in Eq. (11). Note that the simple case of an isotropic
edium can be recovered from Eq. (11) by setting di=d
−1.

. Minimum Required Dispersion in the Case of
egative Index Metamaterials

n the cases presented above a phase index was obtained
hat yielded backward wave behavior at all frequencies.
urther insight into the possible functional forms and
onstraints on the phase index can be gained by rewriting
he group velocity according to

vg = � c0

n�k�
−

c0k

n�k�2

�n�k�

�k �k̂. �12�

ince, as discussed previously, group velocity must be
ositive in the passband, Eq. (12) provides us with a con-
traint on the functional form of the index. In other
ords, any solution for the index that yields propagating
ackward waves must also give a positive result for the
roup velocity when substituted in Eq. (12). As an ex-
mple let us assume the index can be written in the form
n�k� = �kp, �13�

here � and p are arbitrary constants. Substituting Eq.
13) into Eq. (12), the conditions for a positive group ve-
ocity become

p � 1 for � � 0, �14a�

p � 1 for � � 0. �14b�

ote that the phase index in Eq. (6) has the form given by
q. (13), which satisfies the condition of inequality (14a),
ince p=2 and �=b�0. In other words, substituting Eq.
6) into Eq. (12) yields

vg = −
c0

bk2 � 0. �15�

he index given by Eq. (6) is isotropic. In the anisotropic
ase the constraints of inequalities (14a) and (14b) must
e applied separately to each direction in which there is a
assband. Using Eq. (11) in conjunction with inequalities
14), we now have a set of conditions that provide the
ramework for generating an index of refraction, either
sotropic or anisotropic, which will produce the backward
ave phenomenon. Finally, the conditions given in Eq.

13) and inequalities (14) also demonstrate an important
haracteristic of negative index media: In the negative in-
ex case ���0�, the medium is necessarily dispersive �p
1�.

. ANISOTROPIC MEDIA
n Section 2 it was shown that a necessary condition for a
erfect backward wave is an isotropic index of refraction.
urthermore, an analysis of the dispersion characteristics
etermined that the index was necessarily negative. In
he case of the imperfect backward wave it was shown
hat the index could not be identical along all three prin-
ipal axes. In other words, the medium must be aniso-
ropic. However, no constraints on the sign of the index
ere established. In this section a general analysis will be
erformed to determine the requirements on the sign of
he index along the principal axes. For simplicity let us
onsider a uniaxial medium where the permittivity and
ermeability are given by

�� = �0�
�s 0 0

0 �s 0

0 0 �z
	 , �16�

� = �0�r, �17�

here �0 and �0 are the free-space permittivity and per-
eability, respectively. From Eqs. (16) and (17) the optical

xis of the uniaxial medium is directed along the z axis.
n this case, a so-called ordinary wave will correspond to
ny wave propagating such that its D vector is perpen-
icular to the optical axis (i.e., D polarized in the x–y
lane). In uniaxial media, ordinary wave propagation has
n isotropic character. Since this type of behavior was ex-
mined in Section 2, the ordinary wave will not be consid-
red here. If, on the other hand, the D vector is polarized
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n the plane containing both the optical axis and the
ropagation direction, then the wave is considered ex-
raordinary. The k-space diagram for the extraordinary
ave propagating through a medium with material pa-

ameters �s=1, �z=−2, and �r=1 is shown in Fig. 2. It
hould be noted that since in the following analysis we
re mainly concerned with the shape of the k surfaces,
nd since different values of � only scale these surfaces, a
onvenient value of � can be chosen. For simplicity, the
lots in this section are generated using �=1.
For an extraordinary wave propagating along one of

he three primary axes, Fig. 2 can be used to further elu-
idate the situation. For propagation in the x direction the
xtraordinary wave is polarized along the z axis. For this
olarization, the index is imaginary so that there is no
ropagation in the x direction. Similarly, the index for an
xtraordinary wave propagating in the y direction will
lso be imaginary, cutting off propagation. On the other
and, an extraordinary wave with a propagation vector
long the z axis (along the optical axis) will be polarized
n the x–y plane, where the index is real and positive
RHM), and it will propagate. This is the point at which
he k surfaces for the ordinary and extraordinary waves

ig. 2. (Color online) (a) 3D and (b) two-dimensional (2D)
-space diagrams for RHM and LHM two-sheeted hyperboloids.
n both cases the media are uniaxial with �x=�y=�s. In the RHM
ase the parameters are �s=1, �z=−2, and �r=1. The parameters
n the LHM case are �s=−1, �z=2, and �r=−1. Because the pa-
ameters in the LHM case are simply the negatives of those in
he RHM case, the k surfaces are identical. The angle between
he phase velocity and group velocity for the RHM and LHM
ases are shown on the 2D plots.
ntersect so that the two types of waves cannot be distin-
uished. If we now negate all the parameters used to gen-
rate the k surface (i.e., �s=−1, �z=2, and �r=−1), the re-
ulting k-space diagram will be identical to that in Fig. 2.
owever, in this case waves propagating in the z direction
ill see a negative index (LHM) instead of a positive one
hereas waves propagating in the x or y directions will
gain be cut off. The k surface in Fig. 2 is an example of a
wo-sheeted hyperboloid that results when the extraordi-
ary wave in a uniaxial medium only propagates in the
irection of the optical axis.
Figure 3 shows an example of a one-sheeted hyperbo-

oid. This type of k surface results in a medium where
nly a wave with D polarized in the direction of the opti-
al axis can propagate. This implies that there is no
ropagating ordinary wave in this medium since, by defi-
ition, the D vector for the ordinary wave must be polar-

zed perpendicular to the optical axis. The k surface of
ig. 3 corresponds to an extraordinary wave for a medium
ith parameters �s=−1, �z=2, and �r=1 in the RHM case,
r �s=1, �z=−2, and �r=−1 in the LHM case. In both
ases, for propagation in the x and y directions, the ex-

ig. 3. (Color online) (a) 3D and (b) two-dimensional (2D)
-space diagrams for RHM and LHM one-sheeted hyperboloids.
n both cases the media are uniaxial with �x=�y=�s. In the RHM
ase the parameters are �s=−1, �z=2, and �r=1. The parameters
n the LHM case are �s=1, �z=−2, and �r=−1. Because the pa-
ameters in the LHM case are simply the negatives of those in
he RHM case, the k surfaces are identical. The angle between
he phase velocity and group velocity for the RHM and LHM
ases are shown on the 2D plots.
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raordinary wave is polarized along z where it sees a posi-
ive index in the RHM case or a negative index in the
HM case. For z-directed waves the extraordinary wave

s polarized in the x–y plane. These waves are attenuated
ue to the fact that the permittivity and permeability
ave opposite signs. Table 1 summarizes the propagation
ehavior for the one-and two-sheeted hyberboloids.
As shown above, the k surface shapes do not change

hen the signs of the parameters �s, �z, and �r are re-
ersed. In other words, the RHM surfaces are indistin-
uishable from the LHM surfaces for both the one- and
he two-sheeted hyperboloids considered. Hence, if we are
aced with the task of determining the sign of the index of
efraction, the information provided by a visual inspec-
ion of these equifrequency surfaces alone is insufficient.
o determine the sign of the index we must return to an
nalysis similar to that performed in Section 2, that is, we
ust examine the relationship between the phase and

roup-velocity vectors.
For both k surfaces a cut was taken in the ky–kz plane

nd the angle between the phase and group-velocity vec-
ors was calculated as a function of kz. Figure 4(a) shows
he angles resulting from the two-sheeted surface of Fig.
, and the angles calculated for the one-sheeted surface of
ig. 3 are shown in Fig. 4(b). For the RHM cases (solid
urves) of both the one- and two-sheeted hyperboloids the
ngle between the phase velocity and group velocity be-
ins at 0° at the onset of propagation (kz=1 for the two-
heeted hyperboloid and kz=0 for the one-sheeted hyper-
oloid) and approaches 90° asymptotical from below as kz
ecomes large. On the other hand, in the LHM cases
dashed curves) the angle begins at 180° at the onset of
ropagation and approaches 90° asymptotical from above
n the large kz limit. Therefore, for both uniaxial media
onsidered, the dot product between the unit vectors of
he group velocity and phase velocity is always positive in
he RHM cases and negative in the LHM cases. Hence,
he LHM versions of the one- and two-sheeted hyperbo-
oids both exhibit imperfect backward wave propagation.
n addition, an analysis of the components of the phase
nd group velocities in the LHM cases for both structures
hows that their ky components are directed in the same
irection and their backward wave behavior is therefore a
esult of oppositely directed kz components. This empha-
izes that imperfect backward wave behavior does not re-
uire all of the components of the phase and group veloci-
ies to be antiparallel.

In the above analysis the relationship between the
hase velocity and group velocity in anisotropic LHM and
HM was discussed using equifrequency surfaces. In
ther words, the permittivity and permeability values
ere taken at a fixed frequency and were constant. A

Table 1. Index Seen by Different Polarizations in
the Two- and One-Sheeted Hyperboloids

k Surface Two-Sheeted One-Sheeted

olarization x–y plane z
(optical axis)

x–y plane z
(optical axis)

Index ±1 j
2 j ±2
uestion can then be asked in regard to the influence of
emporal dispersion on the above analysis. To answer this
e must keep the following in mind. First, the geometry
f the k surface (an ellipsoid, a one-sheeted hyperboloid, a
wo-sheeted hyperboloid, or a null surface for which no
ropagation is allowed) is determined by the signs of the
arameters � and �. Second, the dimensions of the k sur-
aces (i.e., the vertices of the ellipsoid or hyperboloid) are
etermined by the magnitudes of � and �. Therefore, if
he parameters � and � are changing with frequency, in-
tead of a single k surface there will be a family of k sur-
aces, each taken at a different frequency. In the fre-
uency regions where the parameters do not change
igns, each of these k surfaces will have the same geom-
try (i.e., ellipsoid, hyperboloid, no propagation) so that
he sign of the dot product between the group velocity and
hase velocity, and hence the general relationship be-
ween them (left or right handed), will not change sign.

hen one of the parameters changes signs, the geometry
hanges (for example, from a one-sheeted hyperboloid to a
wo-sheeted hyperboloid) and then a new relationship be-
ween the group and phase velocities emerges. This rela-
ionship is maintained until one of the parameters
hanges signs once again. Therefore, for the purposes of
ur analysis here, it is sufficient to analyze the general

ig. 4. (Color online) Calculated angle between the phase and
roup-velocity vectors for the RHM and LHM hyperboloidal k
urfaces considered. (a) Two-sheeted hyperboloid (Fig. 2). (b)
ne-sheeted hyperboloid (Fig. 3).
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ehavior of the four possible geometries (a single ellip-
oid, a one-sheeted hyperboloid, a two-sheeted hyperbo-
oid, and a null surface) in the absence of dispersion, since
he effects of the dispersion are only important to the ex-
ent that they can result in a change in the signs of the
ermittivity and permeability. The general case of an el-
ipsoid was considered in Section 2 and the one- and two-
heeted hyperboloids were examined in this section.

. CONCLUSION
he problem of backward wave propagation was studied

rom a purely three-dimensional propagation point of
iew and two different types of backward waves were de-
ned: perfect and imperfect. In a perfect backward wave
he phase and group-velocity vectors are antiparallel (i.e.,
he angle between the vectors is 180°). In the second type,
he imperfect backward wave, the dot product between
he phase and group-velocity vectors is negative. Starting
ith the above relationships between the phase and
roup-velocity vectors, the forms of the indices necessary
o produce these types of backward waves were obtained.
n both cases, it was shown that backward wave behavior
ould only be the result of propagation through a negative
ndex medium. In the case of the perfect backward wave,
he index was necessarily negative and isotropic while for
he imperfect backward wave the medium was aniso-
ropic possessing a negative index along at least one of
he three principal axes. Constraints on the functional
orm of the indices were then obtained using the condition
hat the group velocity must be positive in a transmission
assband. Although at the moment the construction of
eft-handed media at optical frequencies remains a diffi-
ult task, such media could find use as beam-steering de-
ices and perfect optical lenses. In addition, for the aniso-
ropic case, the polarization dependence of the media
ould be taken advantage of to make filters, polarization-
ependent lenses, and beam-steering components.
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