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The backward-wave phenomenon in an isotropic medium is investigated from a purely wave propagation point
of view. The functional form for the index of refraction necessary to produce such behavior is derived using the
condition that the phase and group-velocity vectors are antiparallel. It is shown that, in the case considered,
the backward-wave propagation can be attained only in a medium where the index is negative. A more general
case is then considered where the angle between the phase velocity and group velocity is allowed to vary be-
tween 90° and 270°. It is shown that such behavior requires propagation through an anisotropic medium where
at least one of the axes has a negative index and the general form of the index along each of the three principal
axes is derived. The condition that the group velocity must be positive in the transmission passband is then
used to obtain the required minimum dispersion for a medium with negative index for both the isotropic and

the anisotropic cases. © 2006 Optical Society of America
OCIS codes: 160.1190, 260.1180, 260.2110, 350.5500.

1. INTRODUCTION

Recently, media that exhibit a negative index of refraction
have been the topic of extensive work.’™ This is due to
the development of the first negative index medium by
Smith et al.’ and the subsequent explosion of publications
on the subject that followed. An important characteristic
of negative index media is that the wave vector k, the
electric field vector E, and the magnetic field vector H
form a left-handed triplet, a relationship that has led
them to be dubbed left-handed media (LHM). The afore-
mentioned relation among the three vectors implies that
the Poynting vector (S) and the wave vector (k) of a wave
propagating in a LHM are necessarily antiparallel, which
is the defining characteristic of the so-called backward
wave. Therefore, LHM and consequently media with
negative permittivity and permeability (negative index)
are in essence backward wave media; but what about the
reverse? Does an antiparallel relationship between the
Poynting vector and the wave vector imply a unique nega-
tive index of refraction? And if so, then what would be the
functional form of this index?

In this paper, the backward-wave phenomenon will be
studied from a purely three-dimensional wave propaga-
tion point of view. To do so, it is convenient to restrict our
attention to propagation through a transmission pass-
band (i.e., away from regions of anomalous dispersion). In
such a passband, the group velocity and Poynting vector
point in the same direction and the problem can be for-
mulated in terms of the group velocity instead of the
Poynting vector. Furthermore, it is also convenient to sub-
stitute the propagation vector with the phase velocity. It
should be noted that these substitutions are appropriate
in the context of the present work, since we are only con-
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cerned with the directions of the vectors and not necessar-
ily their magnitudes.

Our analysis of backward-wave propagation and its re-
lation to the index of refraction will be presented as fol-
lows. In Section 2 the index of refraction necessary to pro-
duce backward wave behavior is derived using the
condition that the group and phase velocities are perfectly
antiparallel (the angle between them is 180°). It is shown
that this index is necessarily negative and isotropic. The
condition that the phase and group-velocity vectors are
perfectly antiparallel is then relaxed and the case is con-
sidered where the two vectors have at least one antipar-
allel component. In this case the medium is necessarily
anisotropic requiring a negative index along at least one
principal axis. Moreover, constraints on the functional
form of the index of refraction are obtained using the con-
dition that the group velocity must be positive in the
transmission passband. Anisotropic uniaxial right-
handed media (RHM) and LHM are further examined in
Section 3 where the angles between the phase and group
velocities under certain conditions are calculated. Section
4 contains our final thoughts and conclusions.

2. BACKWARD WAVES

A. Perfect Backward Waves

To examine the backward-wave phenomenon we start
with a purely three dimensional wave propagation point
of view, considering an arbitrary medium with phase in-
dex n(k). The challenge is to find a functional form for the
phase index that results in the propagating wave exhibit-
ing backward behavior. To find this functional form, we
begin with a known property of backward waves. That is,
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the phase and group velocities of such waves must be an-
tiparallel, where the phase and group velocities are given
by

Co .

v, = _n(k)k’ (1)
Cok

Vg= k%‘ (2)

Here, ¢, is the speed of light in vacuum and % is the unit
vector in the direction of propagation. In an arbitrary me-
dium where the relationship between the group velocity
and phase velocity is not known, the two vectors can be
related by

(ng,vgy7vgz) = (dxvpx’dyvpy,dzvpz)’ (3)

where the d; (i=x,y,z) are arbitrary constants that ac-
count for the differences in magnitude and direction be-
tween the components of the phase and group velocities.
Note that if any of the components of the phase velocity
are zero, Eq. (3) may not be valid. However, a new coordi-
nate system can always be defined in which the phase ve-
locity has no zero components. For the case of a perfect
backward wave medium, the angle between the phase
and group velocities must be 180°. This condition has two
consequences for Eq. (3). First, we must choose d,=d,
=d,=d so that the vectors are collinear. Second, d must be
negative to ensure that the vectors are perfectly antipar-
allel. To enforce the fact that d must be negative, it will be
written in the form -|d|. Hence, Eq. (3) becomes

Ve=—ld|v,. (4)

Using Eqgs. (1) and (2) for the group and phase velocities
in Eq. (4) gives

Cok Co .

Vie— =~ |d|—F. (5)
n(k) n(k)

The parameter d, as written in Eq. (5), is now an arbi-
trary constant that accounts for any difference in the
magnitudes of the two velocity vectors. It is interesting to
note that the phase index n(k) that satisfies Eq. (5) will
result in backward wave propagation for all frequencies.
However, it should be noted that this result is purely
mathematical in the sense that no physical medium cur-
rently exists that satisfies Eq. (5) for all frequencies. Set-
ting d=1 for simplicity, the solution to the above vector
differential equation is given by

n(k) = bk?, (6)

where b is an arbitrary constant with units of square
meters. The dispersion relation corresponding to this in-
dex is

wk)=——=—. (7

Figure 1 shows the dispersion diagram calculated from
Eq. (7). The wave vector £ in branch I of Fig. 1 is negative,
implying a negative phase velocity. On the other hand,
the local derivative at any point on branch I is positive,
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Fig. 1. (Color online) Dispersion relation for the index given in
Eq. (7).

signifying that the group velocity is positive everywhere.
In branch II the opposite is true. That is, at all points the
phase velocity is positive and the group velocity is nega-
tive. Hence, as expected, the index derived from Eq. (4)
yields backward wave behavior at all frequencies since
the phase and group velocities are antiparallel every-
where.

It is important at this point to determine which branch
in Fig. 1 presents a valid solution. Assume that the propa-
gating waves are generated by a fixed source located at
r=0 and that the energy of the waves propagates away
from the generator in the +7 direction. For this configura-
tion, the solution represented by branch I implies a group
velocity that propagates away from the source (+7 direc-
tion) and a phase velocity that propagates toward the
source (-7 direction). The solution represented by branch
II, on the other hand, implies the opposite case with the
group velocity propagating toward the source (-7 direc-
tion) and the phase velocity propagating away from the
source (+7 direction). Since we have assumed propagation
in the passband, where the group and energy velocities
are the same, the solution in branch II directly violates
our assumption that the energy of the wave propagates
away from the source. Therefore, the situation in branch
IT is unphysical and does not present a valid solution.
This can also be seen as follows. Branch II represents the
case of a negative group velocity. It has previously been
shown that in passive media the group velocity can be
negative only in the stop band.>®" Hence, branch II is
again unphysical since we are assuming propagation
through the passband of a passive medium. It should be
noted that branch I can be obtained only by choosing &
<0 in Eq. (7). However, choosing <0 is also the condi-
tion used to obtain a negative index of refraction in Eq.
(6). Therefore, we must conclude that for the case consid-
ered above, a negative index of refraction is a necessary
condition for backward wave propagation. We may take
note of the fact that the dispersion relation obtained
above is in agreement with those derived for the dual of a
simple transmission line model.® This model, which con-
sists of a series capacitor and a shunt inductor (instead of
a customary series inductor and shunt capacitor), was the
starting point for several of the first negative index media
developed to date.>® To our knowledge, this is the first
attempt to derive these results from the full wave propa-
gation (3D) point of view.
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B. Imperfect Backward Waves

In Subsection 2.A we considered a case where the phase
and group-velocity vectors were perfectly antiparallel (the
angle between them was 180°). To perform a more general
analysis, the angle between the phase and group veloci-
ties should be allowed to have any value in the range of
90° < #<270°. In other words, we should allow the dot
product of the unit vectors of the phase and group veloci-
ties to have any negative value. We will refer to these as
imperfect backward waves. For such a wave, although the
phase and group velocities are not antiparallel, they will
have antiparallel components. Hence, the point of refer-
ence is once again Eq. (3), but now the d;’s can no longer
all be identical. In terms of the components of the group
and phase velocities, from Eq. (3) we can write

Ugi =dUp;, (8)

where i=x,y,z. If we use the expressions of Egs. (1) and

(2) for the group velocity and phase velocity, Eq. (8) can be
written as

1 k ﬁn(k) ki Co ki

co\ - Tre o | = di 9)

n(k) n(k)* ok; |k n(k) k
With a little algebra Eq. (9) can be rewritten in the form
1-d,) k on(k)

nk) ~ nk)? gk,

(10)

The solution to the above differential equation is given by
(k) = ay(H) 1", (a

where «; is an arbitrary constant. Equation (11) shows
that for this imperfect backward wave the index can have
different forms along each of the three principal axes,
which is the case for an anisotropic medium. This will be
further examined in Section 3 where it will be shown
that, to obtain imperfect backward wave propagation, the
index along at least one of the axes must be negative.
That is, we must have «; <0 for at least one of the solu-
tions in Eq. (11). Note that the simple case of an isotropic
medium can be recovered from Eq. (11) by setting d;=d
=-1.

C. Minimum Required Dispersion in the Case of
Negative Index Metamaterials

In the cases presented above a phase index was obtained
that yielded backward wave behavior at all frequencies.
Further insight into the possible functional forms and
constraints on the phase index can be gained by rewriting
the group velocity according to

¢ cok on(k) | .
Vo= | ——-—— k.
g {n(k) n(k)?* ok ]

12)

Since, as discussed previously, group velocity must be
positive in the passband, Eq. (12) provides us with a con-
straint on the functional form of the index. In other
words, any solution for the index that yields propagating
backward waves must also give a positive result for the
group velocity when substituted in Eq. (12). As an ex-
ample let us assume the index can be written in the form
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n(k) = yk?, (13)

where y and p are arbitrary constants. Substituting Eq.
(13) into Eq. (12), the conditions for a positive group ve-
locity become

p>1for y<O, (14a)

p<1for y>0. (14Db)

Note that the phase index in Eq. (6) has the form given by
Eq. (13), which satisfies the condition of inequality (14a),
since p=2 and y=b<0. In other words, substituting Eq.
(6) into Eq. (12) yields

v,=——>0. (15)

The index given by Eq. (6) is isotropic. In the anisotropic
case the constraints of inequalities (14a) and (14b) must
be applied separately to each direction in which there is a
passband. Using Eq. (11) in conjunction with inequalities
(14), we now have a set of conditions that provide the
framework for generating an index of refraction, either
isotropic or anisotropic, which will produce the backward
wave phenomenon. Finally, the conditions given in Eq.
(13) and inequalities (14) also demonstrate an important
characteristic of negative index media: In the negative in-
dex case (y<0), the medium is necessarily dispersive (p
>1).

3. ANISOTROPIC MEDIA

In Section 2 it was shown that a necessary condition for a
perfect backward wave is an isotropic index of refraction.
Furthermore, an analysis of the dispersion characteristics
determined that the index was necessarily negative. In
the case of the imperfect backward wave it was shown
that the index could not be identical along all three prin-
cipal axes. In other words, the medium must be aniso-
tropic. However, no constraints on the sign of the index
were established. In this section a general analysis will be
performed to determine the requirements on the sign of
the index along the principal axes. For simplicity let us
consider a uniaxial medium where the permittivity and
permeability are given by

e 0 O

EZ € 0 € 0 5 (16)
0 0 g

M= Rokrs a7

where €; and y( are the free-space permittivity and per-
meability, respectively. From Egs. (16) and (17) the optical
axis of the uniaxial medium is directed along the z axis.
In this case, a so-called ordinary wave will correspond to
any wave propagating such that its D vector is perpen-
dicular to the optical axis (i.e., D polarized in the x—y
plane). In uniaxial media, ordinary wave propagation has
an isotropic character. Since this type of behavior was ex-
amined in Section 2, the ordinary wave will not be consid-
ered here. If, on the other hand, the D vector is polarized
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in the plane containing both the optical axis and the
propagation direction, then the wave is considered ex-
traordinary. The k-space diagram for the extraordinary
wave propagating through a medium with material pa-
rameters e,=1, ¢,=-2, and u,=1 is shown in Fig. 2. It
should be noted that since in the following analysis we
are mainly concerned with the shape of the & surfaces,
and since different values of w only scale these surfaces, a
convenient value of w can be chosen. For simplicity, the
plots in this section are generated using w=1.

For an extraordinary wave propagating along one of
the three primary axes, Fig. 2 can be used to further elu-
cidate the situation. For propagation in the x direction the
extraordinary wave is polarized along the z axis. For this
polarization, the index is imaginary so that there is no
propagation in the x direction. Similarly, the index for an
extraordinary wave propagating in the y direction will
also be imaginary, cutting off propagation. On the other
hand, an extraordinary wave with a propagation vector
along the z axis (along the optical axis) will be polarized
in the x—y plane, where the index is real and positive
(RHM), and it will propagate. This is the point at which
the & surfaces for the ordinary and extraordinary waves

()
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.\J BrRHM
Vp )

o Vg RHM

4

/ Vp - VgLmm <0
Vp-Vgrmm >0

kz

Fig. 2. (Color online) (a) 3D and (b) two-dimensional (2D)
k-space diagrams for RHM and LHM two-sheeted hyperboloids.
In both cases the media are uniaxial with €,=€,=¢,. In the RHM
case the parameters are ¢,=1, ,=—2, and u,=1. The parameters
in the LHM case are ¢,=-1, ,=2, and u,=-1. Because the pa-
rameters in the LHM case are simply the negatives of those in
the RHM case, the k& surfaces are identical. The angle between
the phase velocity and group velocity for the RHM and LHM
cases are shown on the 2D plots.
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Fig. 3. (Color online) (a) 3D and (b) two-dimensional (2D)

k-space diagrams for RHM and LHM one-sheeted hyperboloids.
In both cases the media are uniaxial with €,=€,=¢,. In the RHM
case the parameters are e,=-1, €,=2, and u,=1. The parameters
in the LHM case are ¢,=1, ¢,=-2, and u,=-1. Because the pa-
rameters in the LHM case are simply the negatives of those in
the RHM case, the & surfaces are identical. The angle between
the phase velocity and group velocity for the RHM and LHM
cases are shown on the 2D plots.

intersect so that the two types of waves cannot be distin-
guished. If we now negate all the parameters used to gen-
erate the & surface (i.e., ,=-1, ,=2, and u,=-1), the re-
sulting k-space diagram will be identical to that in Fig. 2.
However, in this case waves propagating in the z direction
will see a negative index (LHM) instead of a positive one
whereas waves propagating in the x or y directions will
again be cut off. The £ surface in Fig. 2 is an example of a
two-sheeted hyperboloid that results when the extraordi-
nary wave in a uniaxial medium only propagates in the
direction of the optical axis.

Figure 3 shows an example of a one-sheeted hyperbo-
loid. This type of k& surface results in a medium where
only a wave with D polarized in the direction of the opti-
cal axis can propagate. This implies that there is no
propagating ordinary wave in this medium since, by defi-
nition, the D vector for the ordinary wave must be polar-
ized perpendicular to the optical axis. The k& surface of
Fig. 3 corresponds to an extraordinary wave for a medium
with parameters ¢,=-1, €,=2, and u,=1 in the RHM case,
or =1, ¢,=-2, and u,=-1 in the LHM case. In both
cases, for propagation in the x and y directions, the ex-
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traordinary wave is polarized along z where it sees a posi-
tive index in the RHM case or a negative index in the
LHM case. For z-directed waves the extraordinary wave
is polarized in the x—y plane. These waves are attenuated
due to the fact that the permittivity and permeability
have opposite signs. Table 1 summarizes the propagation
behavior for the one-and two-sheeted hyberboloids.

As shown above, the & surface shapes do not change
when the signs of the parameters ¢, €,, and u, are re-
versed. In other words, the RHM surfaces are indistin-
guishable from the LHM surfaces for both the one- and
the two-sheeted hyperboloids considered. Hence, if we are
faced with the task of determining the sign of the index of
refraction, the information provided by a visual inspec-
tion of these equifrequency surfaces alone is insufficient.
To determine the sign of the index we must return to an
analysis similar to that performed in Section 2, that is, we
must examine the relationship between the phase and
group-velocity vectors.

For both & surfaces a cut was taken in the k,—k, plane
and the angle between the phase and group-velocity vec-
tors was calculated as a function of %,. Figure 4(a) shows
the angles resulting from the two-sheeted surface of Fig.
2, and the angles calculated for the one-sheeted surface of
Fig. 3 are shown in Fig. 4(b). For the RHM cases (solid
curves) of both the one- and two-sheeted hyperboloids the
angle between the phase velocity and group velocity be-
gins at 0° at the onset of propagation (k,=1 for the two-
sheeted hyperboloid and %.,=0 for the one-sheeted hyper-
boloid) and approaches 90° asymptotical from below as &,
becomes large. On the other hand, in the LHM cases
(dashed curves) the angle begins at 180° at the onset of
propagation and approaches 90° asymptotical from above
in the large k, limit. Therefore, for both uniaxial media
considered, the dot product between the unit vectors of
the group velocity and phase velocity is always positive in
the RHM cases and negative in the LHM cases. Hence,
the LHM versions of the one- and two-sheeted hyperbo-
loids both exhibit imperfect backward wave propagation.
In addition, an analysis of the components of the phase
and group velocities in the LHM cases for both structures
shows that their &, components are directed in the same
direction and their backward wave behavior is therefore a
result of oppositely directed %k, components. This empha-
sizes that imperfect backward wave behavior does not re-
quire all of the components of the phase and group veloci-
ties to be antiparallel.

In the above analysis the relationship between the
phase velocity and group velocity in anisotropic LHM and
RHM was discussed using equifrequency surfaces. In
other words, the permittivity and permeability values
were taken at a fixed frequency and were constant. A

Table 1. Index Seen by Different Polarizations in
the Two- and One-Sheeted Hyperboloids

k Surface Two-Sheeted One-Sheeted

Polarization x—y plane z x—y plane z
(optical axis) (optical axis)

Index x1 V2 j +2

Vol. 23, No. 11/November 2006/J. Opt. Soc. Am. B 2381

180 ;
@
150 T 3 —RHM
g-lzo + . N
g 90 | B
L
g 60 +
10 +
0 t t t t L
0 1 2 1 q 5
kz
—RHM
- LHM
0 1 2 1 q 5
kz

Fig. 4. (Color online) Calculated angle between the phase and
group-velocity vectors for the RHM and LHM hyperboloidal %
surfaces considered. (a) Two-sheeted hyperboloid (Fig. 2). (b)
One-sheeted hyperboloid (Fig. 3).

question can then be asked in regard to the influence of
temporal dispersion on the above analysis. To answer this
we must keep the following in mind. First, the geometry
of the k surface (an ellipsoid, a one-sheeted hyperboloid, a
two-sheeted hyperboloid, or a null surface for which no
propagation is allowed) is determined by the signs of the
parameters € and w. Second, the dimensions of the k& sur-
faces (i.e., the vertices of the ellipsoid or hyperboloid) are
determined by the magnitudes of € and u. Therefore, if
the parameters € and u are changing with frequency, in-
stead of a single & surface there will be a family of £ sur-
faces, each taken at a different frequency. In the fre-
quency regions where the parameters do not change
signs, each of these k& surfaces will have the same geom-
etry (i.e., ellipsoid, hyperboloid, no propagation) so that
the sign of the dot product between the group velocity and
phase velocity, and hence the general relationship be-
tween them (left or right handed), will not change sign.
When one of the parameters changes signs, the geometry
changes (for example, from a one-sheeted hyperboloid to a
two-sheeted hyperboloid) and then a new relationship be-
tween the group and phase velocities emerges. This rela-
tionship is maintained until one of the parameters
changes signs once again. Therefore, for the purposes of
our analysis here, it is sufficient to analyze the general
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behavior of the four possible geometries (a single ellip-
soid, a one-sheeted hyperboloid, a two-sheeted hyperbo-
loid, and a null surface) in the absence of dispersion, since
the effects of the dispersion are only important to the ex-
tent that they can result in a change in the signs of the
permittivity and permeability. The general case of an el-
lipsoid was considered in Section 2 and the one- and two-
sheeted hyperboloids were examined in this section.

4. CONCLUSION

The problem of backward wave propagation was studied
from a purely three-dimensional propagation point of
view and two different types of backward waves were de-
fined: perfect and imperfect. In a perfect backward wave
the phase and group-velocity vectors are antiparallel (i.e.,
the angle between the vectors is 180°). In the second type,
the imperfect backward wave, the dot product between
the phase and group-velocity vectors is negative. Starting
with the above relationships between the phase and
group-velocity vectors, the forms of the indices necessary
to produce these types of backward waves were obtained.
In both cases, it was shown that backward wave behavior
could only be the result of propagation through a negative
index medium. In the case of the perfect backward wave,
the index was necessarily negative and isotropic while for
the imperfect backward wave the medium was aniso-
tropic possessing a negative index along at least one of
the three principal axes. Constraints on the functional
form of the indices were then obtained using the condition
that the group velocity must be positive in a transmission
passband. Although at the moment the construction of
left-handed media at optical frequencies remains a diffi-
cult task, such media could find use as beam-steering de-
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vices and perfect optical lenses. In addition, for the aniso-
tropic case, the polarization dependence of the media
could be taken advantage of to make filters, polarization-
dependent lenses, and beam-steering components.
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