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A three-dimensional lattice of micron-scale coated spheres is shown to have an isotropic negative index of
refraction at infrared frequencies. The materials used are entirely non-magnetic. The Mie scattering theory of
the constituent spheres is used in the effective medium theory. The physical mechanisms and procedures are
presented in the design of a negative effective permeability with solid polaritonic spheres, as well as a negative
effective permittivity with solid Drude spheres. It is then shown that a collection of polaritonic spheres coated
with a thin layer of Drude material can exhibit a negative index of refraction at infrared frequencies. Com-
parison with numerical photonic band structure calculations verifies the theory.
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I. INTRODUCTION

There has been much progress in the development of
negative-index metamaterials in the past few years. This
progress, however, has been much more rapid for metamate-
rials which operate at microwave frequencies than for those
at infrared and optical frequencies. The first negative-index
metamaterials1,2 combined arrays of thin metal wires, which
provide a negative permittivity,3 and split-ring resonators,
which provide a negative permeability.4 Although split-ring
resonators have been scaled down to micron-scale features
which operate at far-infrared frequencies,5 they become very
difficult to fabricate at these dimensions. Additionally, their
inherent anisotropy requires that an isotropic metamaterial
have a three-dimensionally orthogonal arrangement. Loaded
transmission line media6,7 have proven quite useful in mak-
ing compact microwave devices, but their reliance on
lumped or distributed loading elements makes them unsuit-
able for optical frequencies. Photonic crystals can have a
negative effective index, although the mechanism respon-
sible for the effect is different, and as such they are more
prone to practical problems.8,9

We are interested in developing negative-index metama-
terials at infrared and optical frequencies. To this end, we
have previously reported that a three-dimensional array of
dielectric spheres can be made to exhibit an isotropic nega-
tive permeability.10,11 The background theory of the effective
permittivity and permeability of dielectric and magnetic
spheres was first reported by Lewin.12 Other reports have
also found a negative permeability or negative index by us-
ing magnetodielectric13 or ferroelectric14 spheres. In all of
these cases, the magnetic response is excited by leaky cavity
resonances in the spheres. These localized resonances can be
lowered into the long-wavelength limit by using nonmag-
netic spheres with a large permittivity. The localized nature
of the resonances results in an isotropic negative permeabil-
ity which does not depend on the exact lattice structure or
Bragg scattering. These concepts were also used to predict a
negative permeability in two-dimensional dielectric rods.15,16

Most recently, a negative-index composite was reported17

which used two interpenetrating lattices of spheres: one lat-
tice used a polaritonic material to provide a negative perme-

ability, and the other lattice used a Drude material to provide
a negative permittivity.

Here we report on the design of a negative-index metama-
terial made of a single lattice of nonmagnetic coated spheres.
We extend the effective medium theory of Ref. 11 to accom-
modate the coated spheres and describe a design procedure.
The spheres have a core of LiTaO3, which is a polaritonic
crystal. The core is coated by a thin layer of a Drude model
semiconductor. The dimensions of the constituents are a few
microns, which results in a negative index at infrared fre-
quencies. Section II presents the effective medium theory
and Mie scattering of dielectric spheres. Section III presents
the methods of designing both a negative permeability and
negative permittivity with solid spheres. In Sec. IV we show
how coated spheres, which have modified Mie scattering co-
efficients, can have a negative index of refraction. We then
verify our theory by comparing our results with photonic
band calculations. Finally, the results are summarized in
Sec. V.

II. EFFECTIVE MEDIUM THEORY

We now summarize the theory which relates the scattering
from a small obstacle to the bulk permittivity and permeabil-
ity of a collection of such obstacles.11 We initially consider
this obstacle to be a dielectric sphere. Section IV will discuss
the modifications necessary for coated spheres. The follow-
ing derivation concentrates on the magnetic fields; the dual
relations are valid for the electric fields.

An incident plane wave, represented by the magnetic field
Hinc=H0 exp�ik0z�ŷ and k0=� /c, is incident on a single iso-
lated sphere of radius r0 and relative permittivity �r=n2. The
scattered magnetic field can be decomposed into multipole
terms; the proportionality constant of the 2m-pole term is18

bm =
�m�nx��m� �x� − n�m�x��m� �nx�
�m�nx��m� �x� − n�m�x��m� �nx�

, �1�

and the 2m-pole coefficients of the scattered electric field are
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am =
n�m�nx��m� �x� − �m�x��m� �nx�
n�m�nx��m� �x� − �m�x��m� �nx�

. �2�

Here x=k0r0, and �m�z�=zjm�z� and �m�z�=zhm
�1��z� relate the Riccati-Bessel functions to the spherical Bessel functions.19 The

primes indicate differentiation with respect to the argument. The scattered magnetic dipole field is proportional to b1 and is
given by18

Hsca = −
3

2
H0b1�2r̂ sin � sin �

h1
�1��k0r�

k0r
+ ��̂ cos � sin � + �̂ cos ��

�k0rh1
�1��k0r���
k0r

�
=

3

2

iH0b1

k0
3

eik0r

r
�k0

2�r̂ � ŷ� � r̂ + �3�ŷ · r̂�r̂ − ŷ�� 1

r2 −
ik0

r
�� . �3�

Note that all of the near-field terms have been retained. This
expression may be compared with the standard expression of
magnetic dipole radiation,20

Hdipole =
1

4	

eik0r

r
�k0

2�r̂ � m̂� � r̂ + �3�m̂ · r̂�r̂ − m̂�

�� 1

r2 −
ik0

r
�� . �4�

Therefore, we can conclude that the sphere is completely
equivalent to a magnetic dipole with an effective moment m
and effective polarizability 
m, where m=
mHinc�0�
=
mH0ŷ. The effective polarizability is then21


m = 6	ib1/k0
3. �5�

The response of a bulk material is described by the effec-
tive permeability �r

eff. The Clausius-Mossotti equation,20 also
known as the Lorentz-Lorenz formula,22 relates the long-
wavelength limit bulk effective permeability to the effective
polarizability of the single sphere,


m =
3

N
��r

eff − 1

�r
eff + 2

� , �6�

where N is the volume density of the spheres. The filling
fraction f of the composite is f =4	Nr0

3 /3. Only modest fill-
ing fractions are considered here; large values require correc-
tions due to higher-order multipole terms and structure-
dependent lattice sums. Finally, substitution of Eq. �5� into
Eq. �6� yields the effective permeability in terms of the first-
order multipole term b1,

�r
eff =

k0
3 + 4	iNb1

k0
3 − 2	iNb1

. �7�

Similarly, the effective permittivity �r
eff can be related to

the scattered electric dipole term a1,

�r
eff =

k0
3 + 4	iNa1

k0
3 − 2	iNa1

. �8�

Expressions �7� and �8� completely determine the response
of the bulk composite. They depend on the frequency of the
wave as well as the radius, density, and composition of the
spheres.

III. COMPOSITE OF SOLID SPHERES

A collection of solid non-magnetic spheres can be de-
signed to have almost arbitrary values of �r

eff and �r
eff. In this

work we are particularly interested in designing negative-
index materials, which requires both a negative permeability
and a negative permittivity. Here we outline the design pro-
cedure for a separate negative permeability and negative per-
mittivity; this will prove useful in the design of a negative
index in Sec. IV.

A. Negative permeability

We reported the design of a negative permeability using
dielectric spheres in Ref. 11. In this section the results of that
report are summarized, along with additional design limits
and procedures.

The magnetic response of a nonmagnetic composite re-
quires appreciable values of the b1 coefficient. Since the val-
ues of b1 are usually small, it is important to investigate its
resonant behavior. From Eq. �1�, resonances are induced if

�1��x�
�1�x�

= n
�1��nx�
�1�nx�

. �9�

The pseudoperiodic nature of these functions implies that
there are an infinite number of resonances. However, these
resonances often occur at frequencies beyond the long-
wavelength limit. Then the Clausius-Mossotti equation does
not apply; those resonances do not contribute to �r

eff.
The resonant frequencies of b1 that are within the long-

wavelength limit can be estimated when x is small, although
the value of nx is unrestricted. Then Eq. �9� reduces to
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j0�nx� =
sin�nx�

nx
= 0, �10�

which has the roots nx=	q for q=1,2 ,3. . .. The fundamen-
tal magnetic resonant frequency �m

res, when q=1, is

�m
res =

	c

r0
	�r

. �11�

This can also be expressed as a ratio between the free-space
wavelength and the diameter of the sphere,

�0
res/2r0 = 	�r. �12�

Assuming a definition of the long-wavelength limit of
�0

res /2r0
10, the permittivity of the spheres must satisfy �r

100 so that the magnetic resonance is within the long-
wavelength limit. This result is not surprising when the
sphere is viewed as a dielectric cavity; the frequency of the
bulk resonance must be depressed into the long-wavelength
limit of the ambient medium.

Ferroelectric or polaritonic materials can provide the re-
quired large dielectric constants. Whereas ferroelectrics may
be more useful for resonances in the microwave range, the
lattice resonance in polaritonic crystals �reststrahlen region�
can be exploited to tailor the permeability resonance at in-
frared and optical frequencies. The relative permittivity of
polaritonic materials follows the relation

�r��� = �����1 +
�L

2 − �T
2

�T
2 − �2 − i��

� , �13�

where ���� is the high-frequency limit of the permittivity, �T

is the transverse optical phonon frequency, �L is the longi-
tudinal optical phonon frequency, and � is the damping
coefficient.23 These parameters are related by the Lyddane-
Sachs-Teller relation �L

2 /�T
2 =��0� /����, where ��0� is the

static permittivity. The spheres in the following are assumed
to be made of LiTaO3, using the following parameters:24

��0�=41.4, ����=13.4, �T /2	=4.25 THz, �L /2	
=7.46 THz, and � /2	=0.15 THz.

As an example,11 consider a collection of LiTaO3 spheres
with filling fraction 0.268 and r0=4 �m. Using Eq. �13� with
�=0 in Eq. �11� leads to an estimate of the magnetic reso-
nance frequency of �m

res /2	=3.58 THz, where the relative
permittivity of LiTaO3 is �r��m

res�=109.8+ i1.57. A full cal-
culation of Eq. �7� reveals a resonance in �r

eff centered at
3.53 THz, which is very close to the previous prediction. A
negative permeability is found above the resonance, which
has a minimum real value of �r

eff=−0.25 at 3.58 THz. These
results, as well as a figure of �r

eff, were previously reported in
Ref. 11. The details presented here are sufficient to assist in
the design of a negative index metamaterial and will be
needed in Sec. IV.

B. Negative permittivity

The method described in Sec. III A can also be used to
find the resonances of the electric response a1. The first elec-
tric resonance, however, is at a higher frequency than the
fundamental magnetic resonance. This means that a sphere

with an even larger dielectric constant than that found in Sec.
III A would be required to drive such a bulk resonance. For-
tunately, there is another mechanism by which an electric-
dipole resonance can be induced. This can be seen from a
series expansion of �2�, for m=1,18

a1 = − i
2

3
� �r − 1

�r + 2
�x3 + O�x5� . �14�

An isolated sphere has an electric dipole resonance when its
material permittivity �r=−2. Note that since this value is
negative, the fields are evanescent within the sphere, making
this a surface resonance. This is in contrast to the magnetic
resonance, which is a bulk cavity resonance.

How is �r
eff affected by the resonance in a1? Using Eq.

�14� in Eq. �8� and setting the resulting denominator to zero,
the condition

�r
res =

f + 2

f − 1
�15�

approximates the material permittivity of the spheres that is
required to drive a resonance in �r

eff. The required material
permittivity is always negative and becomes more negative
with increasing filling fraction.

Metals and semiconductors, which follow the Drude
model dispersion, can provide the required negative material
permittivity. The Drude model is given by

�r��� = 1 −
�p

2

�2 + i��
, �16�

where �p is the plasma frequency and � is the damping term.
The resonance condition �15� indicates that it is the small
negative values of permittivity that are of interest, which
occur just below �p in Eq. �16�. Metals typically have
plasma frequencies in the ultraviolet and are not useful here.
Instead, semiconductor materials can be tailored to provide
the required plasma frequencies in the infrared. Note that one
could also choose polaritonic materials.

FIG. 1. �Color online� The effective permittivity of a collection
of spheres with filling fraction f =0.435 and radius r0=4.7 �m. The
spheres are made of a Drude material with �p /2	=8.13 THz and
�=�p /100.
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The required plasma frequency of the material can be ap-
proximated by equating Eqs. �15� and �16� and letting �
→0, which yields

�p = �e
res	 3

1 − f
, �17�

where �e
res is the desired resonance frequency of �r

eff. As an
example, if f =0.435 and we specify a resonant frequency of
�e

res /2	=3.53 THz �the same resonant frequency as Sec.
III A�, then the required plasma frequency of the material is
�p /2	=8.13 THz. For simplicity, these approximations have
not included losses; we may now use16 �=�p /100 in Eq.
�16� and calculate the effective media parameters using Eqs.
�7� and �8�. These Drude model values could be achieved
with doped semiconductors. The calculated �r

eff is shown in
Fig. 1. The values for �r

eff for this system do not vary sig-
nificantly from unity and are not shown.

IV. COMPOSITE OF COATED SPHERES

A. Negative index of refraction

A negative index of refraction requires both a negative
permeability and permittivity at the same frequency. Section
III A described how to design a negative permeability, and
Sec. III B described how to design a negative permittivity.
Unfortunately, both cannot be made negative in the same
frequency range. Nevertheless, the same concepts can be ap-
plied to more complex structures. We solve this problem by
now considering coated spheres. In particular, we choose to
tune the core to provide �r

eff�0 and the coating to provide
�r

eff�0. Figure 2 shows a schematic of the coated sphere,
which has a core in the region 0�r�r1 with index n1=�1

2

and a coating in the region r1�r�r2 with index n2=�2
2. The

scattering coefficients �1� and �2� no longer apply, and must
be modified. The appropriate equations, whose derivation
may be found in Ref. 18, are

bm =
n2�m�y���m� �n2y� − Bm�m� �n2y�� − �m� �y���m�n2y� − Bm�m�n2y��
n2�m�y���m� �n2y� − Bm�m� �n2y�� − �m� �y���m�n2y� − Bm�m�n2y��

, �18�

Bm =
n2�m�n1x��m� �n2x� − n1�m�n2x��m� �n1x�
n2�m� �n2x��m�n1x� − n1�m� �n1x��m�n2x�

, �19�

am =
�m�y���m� �n2y� − Am�m� �n2y�� − n2�m� �y���m�n2y� − Am�m�n2y��
�m�y���m� �n2y� − Am�m� �n2y�� − n2�m� �y���m�n2y� − Am�m�n2y��

, �20�

Am =
n2�m�n2x��m� �n1x� − n1�m� �n2x��m�n1x�
n2�m�n2x��m� �n1x� − n1�m� �n2x��m�n1x�

, �21�

where x=k0r1, y=k0r2, �m�z�=−zym�z�, and ym�z� is the
spherical Bessel function of the second kind.19 To find the
effective media values for coated spheres, we simply substi-
tute these equations in Eqs. �7� and �8�.

We will consider the core to be the same as the design in
Sec. III A, which provides �r

eff�0. A coating provides fur-
ther conditions which allow a separately designable permit-
tivity resonance. The magnetic resonance of the core is
hardly affected, as long as the permittivity of the coating
remains small in comparison to the large permittivity of the
core. Just as in Sec. III B, the coating will be designed to
have an electric-dipole resonance on its outer surface. How-
ever, the evanescent field within the coating can tunnel into
the core, which will alter the resonance condition �15�. Let
us investigate this situation in the same manner as Sec. III B.

Given that the permittivity of the core is much larger than
that of the coating—i.e., 
�2 /�1
→0—Eq. �20� can be ap-
proximated for m=1 according to

a1 = − i
2

3
� �2� + 1��2 − �1 − ��

�2� + 1��2 + 2�1 − ���r2
3k0

3 + O�k0
5� , �22�

where �= �r1 /r2�3. Therefore, the electric-dipole resonance
condition for a single coated sphere with high-permittivity
core requires that the coating material have a permittivity of

�2
res = − 2� 1 − �

1 + 2�
� . �23�

Note that the resonance condition �2
res=−2 for a solid sphere

�see Eq. �14�� is recovered when �→0.
When a collection of coated spheres are brought together

to make a composite with filling fraction f =4	Nr2
3 /3, the

effective permittivity �23� will be modified. To find this new
requirement on the coating permittivity �2

res, we substitute
Eq. �22� in Eq. �8� and set the denominator to zero. The
resonance in �r

eff occurs when the permittivity of the coating
is
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�2
res = � f + 2

f − 1
�� 1 − �

1 + 2�
� . �24�

Equating Eq. �24� with Eq. �16� and letting �→0 gives an
estimate of the required plasma frequency of the coating ma-
terial:

�p = �e
res	 3�1 − �f�

�1 − f��1 + 2��
. �25�

Note that Eqs. �24� and �25�, which are valid for coated
spheres, reduce to the solid sphere results �15� and �17�,
when �→0. We have chosen the system parameters to be
r1=4 �m, r2=4.7 �m, and f =0.435. The effective perme-
ability should have a resonance at the same frequency as the
solid spheres designed in Sec. III A—namely, �m

res /2	
=3.58 THz. The resonant frequency of the permittivity, how-
ever, does not need to be at this frequency. Indeed, by choos-
ing a slightly lower �e

res, the permittivity resonance, which is
much stronger and wider, will then have a lower loss at the
magnetic resonance frequency. We therefore have chosen
�e

res /2	=3.2 THz. Using this in Eq. �25� gives �p /2	
=4.22 THz.

The full calculations of the effective permeability, permit-
tivity, and index are shown in Fig. 3, complete with the in-
clusion of a Drude loss term of �=�p /100. The effective
index was calculated with neff=neff� + ineff� =	�r

eff�r
eff and en-

suring that neff� �0. The negative index region has a 9.8%
bandwidth, centered at 3.61 THz. Also note that the value
neff� =−1 is shown, which is an important criterion for sub-
wavelength focusing.25 The imaginary part of the index is
proportional to attenuation and has moderate values in this
range. The presence of loss is an inevitable consequence of
the underlying resonances, but the losses are smaller at fre-
quencies away from the center of the lines. The staggered
overlap of the absorption lines of the permeability and per-
mittivity is manifested in the effective index and is easily
distinguished in Fig. 3�c�. The need to lower the frequency of
the stronger permittivity resonance in order to minimize neff�
in the negative-index region should now be obvious. Finally,
note that the imaginary parts of the calculated permittivity
and permeability shown in Fig. 3 are always positive; the
structure is definitely passive.11

B. Band calculation and verification

Our results can be verified by comparing the effective
dispersion relation, calculated with k=�neff��� /c, and full
numerical photonic band calculations. To this end, we have
modified the code MULTEM2, which is available from Ref. 26.
This code uses a scattering matrix technique which takes into

FIG. 2. A schematic of the coated sphere.

FIG. 3. �Color online� The effective �a� permeability, �b� permit-
tivity, and �c� index of a collection coated spheres. The cores are
made of LiTaO3 of radius r1=4 �m, and the coatings are a Drude
material with r2=4.7 �m, �p /2	=4.22 THz, and �=�p /100. The
filling fraction is f =0.435.
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account the multiple scattering between spheres arranged in a
crystal lattice. Our modifications to the code include the po-
laritonic and Drude dispersion of the materials, as well as the
am and bm coefficients of the coated spheres. We consider the
coated spheres to be arranged in a simple cubic lattice, so
that the density N=1/a3 makes the lattice constant of a
=10 �m equivalent to the filling fraction f =0.435. Figure 4
compares the dispersion of the effective media theory with
the band structure calculations with the wave vector fixed
along the �X, �M, and �R directions. The real part of the
band structure is symmetric about the origin; for clarity, the
second branch is not shown. The curves verify our design
and our effective media theory, as well as the isotropy of the
composite. The modes with large attenuation in the anoma-
lous dispersion region are not shown; they are of little im-
portance here and are difficult to find with the code. The
modes along �X and �R are doubly degenerate, whereas
those along �M are nondegenerate, although they mostly
overlap. The largest deviations between the curves occur just
below the first resonance, where higher-order corrections
might improve the theory.

The phase velocity vp=� /k and group velocity vg
=�� /�k can be calculated from the real part of the band
structure in Fig. 4. The anomalous dispersion region is be-
tween 0.103��a /2	c�0.118, where the group velocity is
negative and there is large attenuation.27 The negative-index
region is found where the curves cross the origin between
0.114��a /2	c�0.126 �note that k=�neff /c�0�. Back-
ward waves, defined by vp�0 and vg
0, are found at the
high-frequency end of this range, where 0.118��a /2	c
�0.126. The negative index of refraction overlaps both the
anomalous disperion region and the backward wave region.27

However, it is this backward wave region, in the passband of
the medium, that is commonly thought of as a negative index
of refraction region.

V. SUMMARY

We have shown that a medium consisting of coated
spheres can have a negative index of refraction. We have
used Mie scattering theory in an effective medium approach
which accurately predicts the effective dispersion of the
composite. Design procedures have been elucidated for all
cases of negative permeability, negative permittivity, and
negative index. The structures presented are simple alterna-
tive designs of metamaterials at infrared frequencies.

Future work will investigate the fabrication of the pre-
sented structure. We note that, for example, nanocrystals of
coated or onion-structure spheres with diameters as small as
20 nm have been fabricated with other materials,28 so it is
anticipated that the comparatively larger coated spheres pre-
sented here could be made as well. We emphasize that be-
cause of the long-wavelength limit approximation, an exact
crystal lattice or high-degree of periodicity should not be
necessary for the present structure; it is the filling fraction f ,
or equivalently the sphere density N, which has more impor-
tance, as shown in Eqs. �7� and �8�.
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FIG. 4. �Color online� The real �band structure� and imaginary �attenuation� parts of the dispersion relation of a simple cubic lattice of
coated spheres with lattice constant a=10 �m. The solid lines are calculated from the effective media theory, and the various point styles
indicate the results of photonic band calculations for wave vectors along the canonical reciprocal lattice directions. The structure is the same
as that described in Fig. 3.
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