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Superluminal group velocities, defined as group velocities exceeding the speed of light in vacuum, c, have
been theoretically predicted and experimentally observed in various types of dispersive media, such as passive
and active Lorentzian media, one-dimensional photonic crystals, and undersized waveguides. Though super-
luminal group velocities have been found in these media, it has been suggested that the pulse “front” and
associated transient field oscillations, known as the precursors or forerunners, will never travel faster than c,
and hence relativistic causality is always preserved. Until now, few rigorous studies of these transient fields in
structures exhibiting superluminal group velocities have been performed. In this paper, we present the dynamic
evolution of these earliest field oscillations in one-dimensional photonic crystals �1DPC�, using finite-
difference time-domain �FDTD� techniques in conjunction with joint time-frequency analysis �JTFA�. Our
study clearly shows that the precursor fields associated with superluminal pulse propagation travel at sublu-
minal speeds, and thus, the arrival of these precursor fields must be associated with the arrival of “genuine
information.” Our study demonstrates the expected result that abnormal group velocities do not contradict
Einstein causality. This work also shows that FDTD analysis and JTFA can be combined to study the dynamic
evolution of the transient and steady state pulse propagation in dispersive media.
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I. INTRODUCTION

Wave propagation in dispersive media has been a com-
plex and sometimes controversial research topic since the
late 19th century. Sommerfeld and Brillouin were among the
early researchers studying wave propagation in linear, homo-
geneous, isotropic, causally dispersive media �1�. They used
the asymptotic method of steepest descent to describe the
propagation of a unit step-modulated signal with a constant
carrier frequency in a semi-infinite, single resonance, passive
Lorentz medium. The purpose of their analysis was to find
the velocity at which the “signal” propagated. Their analysis
led to the discovery of two wave phenomena that precede the
main signal in a dispersive medium, which they named
“forerunners” or “precursors.” The first precursor �Sommer-
feld’s precursor� determines the earliest-time behavior of the
signal, and contains its highest frequency components. The
second precursor �Brillouin’s precursor� contains the lowest
frequency components of the signal. Sommerfeld also found
that the front of the pulse—that is, the moment when the
field first becomes nonzero—propagates precisely at c. He
stressed that a very sensitive detector should be able to reg-
ister the front of the pulse and hence measure a propagation
speed of c for the signal, independent of the medium in
which the signal is propagating.

Sommerfeld and Brillouin’s classification of different
wave velocities—into phase, group, energy, and precursor
velocities—continues to be the standard. It has been argued
that all these velocities, except the precursor’s, can exceed c
or become negative in special circumstances �2�. Superlumi-
nal or negative group velocities have been demonstrated in
experiments at microwave frequencies �3–8�, at optical fre-
quencies �9,10�, in the single-photon limit �11,12�, and even

in media with a negative index of refraction �13,14�. Since
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these abnormal group velocities can be measured, we must
question the traditional notion that, in regions near reso-
nances, group velocity “no longer �has� any appreciable
physical significance” �15� or “ceases to have a clear physi-
cal meaning” �16�. Despite one’s initial impression, superlu-
minal, or negative group velocities are not at odds with the
requirements of relativistic causality, and indeed, it can be
shown that they must exist as a consequence of the Kramers-
Kronig relations, which themselves are a statement of the
system linearity and causality �17–20�.

In a causal, dispersive medium, the signal arrival is indi-
cated by the field amplitude increasing from the precursor
field level to the level of the steady-state signal. As men-
tioned before, among all the aforementioned velocities, it is
only the “front” velocity alone that must satisfy the require-
ments of Einstein causality. In other words, Einstein causal-
ity does not always equate the group velocity with the veloc-
ity of information transfer, particularly when propagation of
attenuated traveling waves is involved. Therefore, a correct
description of the signal arrival requires a correct analysis of
the precursor fields and their role in the dynamic evolution of
the field. Oughstun and co-workers have done extensive
work on precursors in Lorentzian media by refining and gen-
eralizing Sommerfeld and Brillouin’s results �21�. Surpris-
ingly, there has been little work on the precursors in disper-
sive, non-Lorentzian media; particularly, no research has
addressed precursor velocities in media that exhibit abnormal
group velocities due to structural dispersion—that is, disper-
sion due to geometrical features—such as Bragg reflectors
and photonic crystals.

This paper is organized as follows. In Sec. II a brief de-
scription of the finite-difference time-domain �FDTD� algo-
rithm and joint time-frequency analysis �JTFA� is provided.

In Sec. III, we use the combined FDTD and JTFA to study
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the evolution of the precursors in a single resonance Lorent-
zian medium subject to a modulated Gaussian excitation.
Our results agree very well with the results obtained from the
asymptotic analysis of �22�; this agreement reinforces the
conclusion that combining FDTD and JTFA provides a ro-
bust and versatile method for studying the precursor fields in
complex structures such as 1DPC. In Sec. IV, we present the
superluminal propagation of a modulated Gaussian pulse in-
side a 1DPC with various conditions on the front. These
simulations confirm that the front travels with a speed very
close to the speed of light. It is also shown that the attenua-
tion rate for the precursors is lower than the attenuation of
the rest of the pulse, hence providing the possibility of fur-
ther penetration into the dispersive medium. Section V sum-
marizes our final thoughts.

II. FDTD AND JOINT TIME-FREQUENCY ANALYSIS
(JTFA)

The dynamical structure of the propagated field in a
simple dispersive medium such as single resonance Lorent-
zian may be obtained through the evolution of the saddle
points associated with the complex phase function. This
asymptotic theory provides a relatively good approximation
of the pulse propagation in dispersive media with good
physical insights of the time and frequency evolution of the
signal. On the other hand, numerical techniques such as
FDTD offer an accurate description of pulse propagation in
time domain in both simple and complex dispersive media
�23�. The drawback to FDTD as a time-domain technique is
that it provides little physical insight into the frequency evo-
lution of the signal that is important in studying a dispersive
medium. However, the signal processing technique of JTFA
can be used as a post-processing tool to restore the loss of
this insight by retrieving the frequency evolution of the sig-
nal from the time-domain data. Therefore, the combination
of FDTD and JTFA is a viable tool for studying the time and
frequency evolution of the signal inside a complex dispersive
medium.

The FDTD method solves Maxwell’s equations by ap-
proximating the curl equations using centered finite differ-
ences for both the temporal and spatial derivatives, and then
marches the fields through time to obtain transient results
directly. The FDTD results are full-wave solutions of the
wave equation, using a fine discretization in time and space
guarantees the accuracy of the results �23�. Lorentzian di-
electric media are modeled via the so-called auxiliary differ-
ential equation �ADE� technique �23�. Throughout the paper,
one-dimensional wave propagation along the x-axis is as-
sumed and numerical calculations are aimed at the iterative
determination of the Ez and Hy field components, while the
use of the constitutive relation between Dz and Ez accounts
for dispersive effects. Space and time are discretized in steps
�x and �t, respectively, related with each other through the
Courant stability criterion c�t /�x�1. In the following cal-
culations, this ratio �also referred to as the Courant stability
number� has been chosen to be 0.9. Typically, the choice of
the space step �x is dictated by the need to guard against the

pronounced numerical dispersion-induced errors that FDTD
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suffers from. To that end, the choice of a space step that
would be a tenth of a wavelength or less is necessary. This
condition has been fulfilled at all stages of this work, since
our interest in determining the impact of the spectral tail of a
pulse excitation on the transient response of Lorentzian and
composite dielectric media has forced us to choose much
denser spatial discretization rates than the ones normally em-
ployed. Therefore, numerical dispersion effects, arising in
the FDTD modeling of dielectric media �24�, are kept to
negligibly small levels.

An interesting question, that FDTD by itself cannot
address, is what frequency components of the signal give
rise to the fields at each point in time. A natural way to
address this question is to use the signal-processing
technique of JTFA �25�. Joint time-frequency distributions of
signals provide the temporal localization of the frequency
components of a signal. Considered as such, JTFA has the
ability to relate the frequency content of a pulse propagating
in a dispersive medium to its temporal evolution and it can
be used as a systematic numerical method to identify the
Sommerfeld and Brillouin precursors as the products of the
high and low frequency components of the signal. In the field
of computational electromagnetics, JTFA has been mainly
employed for remote sensing and scattering problems
�26,27�.

Linear time-frequency distributions such as the short time
Fourier transform �STFT� and the wavelet transform, and
quadratic time-frequency distributions such as the spectro-
gram, the Page distribution, and the Wigner-Ville distribution
�WVD� are the two main categories of joint time-frequency
distributions available. In linear distributions, signal is
distributed linearly along the two variables of time and
frequency. Therefore, as a consequence of the Heisenberg
inequality, there is a tradeoff between the time and frequency
resolutions. On the other hand, in quadratic distributions,
energy of the signal is distributed between the two variables
of time and frequency. Thus both time and frequency
resolutions can be granted at the same time. The drawback is
the presence of the cross terms that are inherent to the qua-
dratic distributions. Due to the fast-varying nature of the pre-
cursors in time and frequency, a joint time–frequency distri-
bution with high resolution in both time and frequency is
needed to correctly characterize the evolution of the precur-
sors. Therefore, to study the precursors, quadratic distribu-
tions are definitely a better choice than the linear distribu-
tions. Among all possible quadratic distributions, WVD is
chosen because it provides relatively high resolution in the
time-frequency plane, a consequence of the fact that it has
the highest signal concentration on that plane �25�. The
WVD of a signal x�t�, with a Fourier transform X�f� can be
defined either as:

Wx�t, f� = �
−�

+�

x�t + �/2�x*�t − �/2�exp�− i2�f��d� , �1�

or as:

Wx�t, f� = �
−�

+�

X�f + �/2�X*�f − �/2�exp�− i2��t�d� , �2�

where * denotes complex conjugate. While WVD gives the

best resolutions in time and frequency, as stated previously,
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the drawback is the relatively large interference terms
present in the distribution. These can be troublesome, since
they may overlap with the signal and thus make it difficult to
visually interpret the WVD image. However, it appears that
these terms must be present for the good properties of the
WVD �marginal properties, instantaneous frequency, group
delay, and so on� to be present. The interference terms are
rather easily �visually� recognizable due to their discontinu-
ous structure. Moreover, these interference terms do not ap-
pear in the steady-state representations of the signal; there-
fore, Fourier transform of the signal can also be used to
identify the cross terms.

III. ULTRA SHORT MODULATED GAUSSIAN PULSE
PROPAGATING IN A SINGLE RESONANCE LORENTZIAN

MEDIUM

As mentioned previously, most of the studies of the
precursor fields have been concerned with the pulse propa-
gation in a Lorentzian medium. In these situations, the appli-
cation of the asymptotic analysis to the integral representa-
tion of the wave propagation, results in a dynamic
description of the propagating pulse. The integral represen-
tation of the propagated plane wave in the half space z�0 is
given by

A�z,t� =
1

2�
�

C

f̃���exp� z

c
	��,
��d� , �3�

where 
=ct /z is a dimensionless space-time parameter and

	��,
� = i��n��� − 
� , �4�

is the complex phase function. The function A�z , t� repre-
sents any scalar component of the electric field �E�z , t�� or

magnetic field �H�z , t��. Here, f̃��� is the Laplace transform
of the initial pulse f�t�=A�0, t� at the input plane. The spec-

tral amplitude of A�z , t� �i.e., Ã�z ,��� satisfies the scalar
Helmholtz equation

��2 + k̃2����Ã�z,�� = 0, �5�

with complex wave number k̃���=�n��� /c. In order for
the integral in �3� to be convergent, contour of integration
C is taken to be a straight line �=��+ ia on the complex
�-plane, with a being a fixed positive constant that is greater

than the abscissa of convergence of the function f̃���
�28,29�.

In the following, we have used the FDTD method in con-
junction with Wigner-Ville JTFA to study the precursor fields
in a Lorentzian medium. These results—which are in excel-
lent agreement with the Oughstun et al. asymptotic analysis
�21,22�—further underline the correctness and the versatility
of the combined FDTD and JFTA, as a tool in studying the
dynamic evolution of the precursor fields, particularly when
it is applied to a more complicated structure such as the
1DPC of the next section. We consider the propagation of a
modulated Gaussian pulse inside a passive Lorentzian me-

dium that occupies the half-space z�0. The input modulated
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Gaussian pulse propagating in the positive z direction is
given by

S�t� = exp�− � t − t0

Ts
	2�sin��ct� , �6�

where �c is the carrier frequency and the pulse is centered
around the time t0�0 at the z=0 plane with a full width
at 1 /e point given by 2Ts. The medium is characterized
by a single Lorentzian resonance with complex index of
refraction

n��� = �1 −
�p

2

�2 − �0
2 + 2i��

	1/2

, �7�

Here, �0 is the resonance frequency, �p is the plasma fre-
quency, and � is the damping constant of the dispersive,
lossy dielectric. The material absorption band is defined over
the approximate angular frequency domain
�
�0

2−�2 ,
�1
2−�2�, where �1=
�0

2+�p
2. The material dis-

persion is normal �nr��� increases with increasing fre-
quency� over the approximate angular frequency domains
�0,
�0

2−�2� and �
�1
2−�2 ,��, below and above the absorp-

tion band, respectively, while it is anomalous �nr��� decreas
es with increasing frequency� over the approximate angular
frequency domain �
�0

2−�2 ,
�1
2−�2� containing the absorp-

tion band.
The Brillouin choice of medium parameters which

describes a highly absorptive material is used in the numeri-
cal calculations ��0=4
1016 Hz, �=0.28
1016 Hz, and
�p=4.47
1016 Hz�. The modulated Gaussian pulse with pa-
rameters �c=5.75
1016 Hz, Ts=1 fs, and t0=3
Ts is a
wideband pulse that its frequency distribution covers the
anomalous dispersion region of the medium. We have used
the space and time discretization parameters, �x=� /400 and
�t=s�x /c, where � is the wavelength at the carrier fre-
quency of the modulated pulse and s=0.9 is the Courant
stability number.

Since the input carrier frequency �c lies within the me-
dium absorption band, the frequency components of the
propagating field that are within this band will be signifi-
cantly attenuated. As the consequence of propagation, the
input Gaussian evolves into two Gaussian-shaped pulses, the
first containing the high-frequency oscillations, while the
second pulse contains the low-frequency oscillations. These
first and second pulses are recognized as the Sommerfeld and
Brillouin precursors, respectively.

Figures 1 and 2 show the time and frequency evolution
due to the input Gaussian pulse at propagation distances
z=0.5 �m and z=1 �m, respectively. The high frequency
oscillations in the beginning of the time distribution of the
signal in Fig. 1�a� is the Sommerfeld precursor that has com-
pletely evolved. The oscillations following the Sommerfeld
precursor are part of the Brillouin precursor that has not
completely evolved at this observation point. The JTFA in
Fig. 1�b� shows that the frequency evolution of the Sommer-
feld precursor begins with high frequencies that are above
the absorption band and decreases as 
� �
�=
−ct0 /z� in-
creases. At one point around 
�=1.5 the frequency begins

increasing towards the carrier frequency from below the ab-
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sorption band due to the Brillouin precursor. In Fig. 2 the
pulse has traveled deeper inside the medium and both Som-
merfeld and Brillouin precursors are fully present. The Som-
merfeld precursor has similar frequency evolution as in Fig.
1, and around 
�=1.5 the Brillouin precursor appears, where
its frequency evolution starts from low frequencies and in-
creases towards the carrier frequency. In both JTFA plots,
there are high intensity components in the absorption band.
These components are the superfluous cross terms in the
WVD. As stated earlier, to have a good frequency resolution
these cross terms are unavoidable. However, these cross
terms in the absorption band can be simply identified from
their oscillatory appearance. Integrating these cross-terms
over frequency results to zero, as shown from the absence
of frequency components of the signal in the band.
The bandwidth and resolution of the JTFA is necessarily
066602
limited by those of the FDTD technique. However, the
FDTD bandwidth is chosen to be wide enough to include
the spectral content of the excitation pulse up to frequencies
with a power spectral density that is 30 dB lower than its
maximum.

The results presented here are in good agreement with
those calculated using asymptotic techniques in �22�. Our
results show that a combination of FDTD as a time domain
technique, and JTFA as a post processing technique can be
used to provide a comprehensive view of the pulse evolution
in both time and frequency domains.

IV. PRECURSORS IN A ONE-DIMENSIONAL PHOTONIC
CRYSTAL (1DPC)

So far, most studies of the precursor fields have been con-
cerned with Lorentzian media with little or no attention be-

FIG. 1. �Color online� �a� Time distribution,
�b� joint time-frequency distribution, �c� fre-
quency distribution of the modulated Gaussian
pulse after propagating 0.5 �m through the dis-
persive Lorentzian medium. �
�=
−ct0 /z�.

FIG. 2. �Color online� �a� Time distribution,
�b� joint time-frequency distribution, �c� fre-
quency distribution of the modulated Gaussian
pulse after propagating 1 �m through the disper-
sive Lorentzian medium. �
�=
−ct0 /z�.
-4
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ing paid to a more complex structure such as 1DPC. This is
partially due to difficulties in applying the asymptotic analy-
sis to these structures. The results from the previous section
show that a combination of FDTD and JTFA can be used as
a robust and accurate tool to study the precursors �or in gen-
eral the transient response� in any dispersive media including
1DPC. In this section, this combination has been used to
study the wave propagation in a 1DPC exhibiting superlumi-
nal group velocities. In an inhomogeneous structure such as
1DPC it is the multiple reflections that make up the medium
response. Superluminal group velocity in 1DPC has been
experimentally verified in several experiments. For example,
in a series of experiments Chiao et al. have measured the
group velocity of a single-photon wave packet traversing a
1DPC. The photon frequency was chosen to correspond to
the frequency at the center gap, and although the tunneling
appeared to be superluminal, they argued that it was a causal
effect resulting from the pulse reshaping processes �17�. In
the microwave domain, Mojahedi et al. have measured su-
perluminal group velocity for the wave propagation through
the bandgap of a 1DPC �30�.

In the following, we have analyzed the superluminal
propagation of a modulated Gaussian pulse through a 1DPC.
The geometry of the 1DPC is based on the physical
experiment by Mojahedi et al. �30�. It consists of five
dielectric slabs with the width of 1.27 cm. The slabs are
separated by 4.1 cm air-gaps. The dielectric model in
the 1DPC is a single Lorentzian with parameters
�0=4
1011 Hz, �=0.28
1011 Hz, and �p=4.47
1011 Hz.
We have used the space and time discretization parameters,
�x=� /50, �t=s�x /c where � is the wavelength at the reso-
nance frequency of the medium and s=0.9 is the Courant
stability number. Due to the fine discretization of the me-
dium in 1DPC the abrupt change of the dielectric constant at
the air-dielectric slab interfaces does not contribute signifi-
cant numerical errors. The structure is excited with a modu-
lated Gaussian pulse with parameters fc=9.6 GHz,
Ts=3.11 ns, and t0=3
Ts. The center frequency of the
modulated Gaussian is inside the bandgap of the 1DPC.
Since the important frequency components of the pulse are
inside the bandgap, the contributions of the frequency com-
ponents outside the bandgap are negligible. Figure 3 shows
the pulse that has traveled the same distance through the
1DPC and free space. The peak of the pulse that has traveled
through the 1DPC appears in the output 479 ps sooner than
the companion pulse traveling through free space, attenuated
by about 14 dBs.

The group velocity of the pulse propagating through the
1DPC of length Lpc is given by

vg = Lpc/�g, �8�

where �g is the time associated with traversing the 1DPC,
also known as group delay. Fundamentally, it is the transmis-
sion function of the structure that defines the group delay and
it is related to the frequency derivative of the transmission

phase, Arg�T���� as:
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�g =
� Arg�T����

��
. �9�

The time difference between the peaks of the pulses that
have traveled through 1DPC and free space ��t� can be used
to calculate the group delay according to

�g =
Lpc

c
− �t . �10�

The length of the 1DPC is Lpc=22.75 cm and based on the
simulation results �t�479 ps; therefore, group velocity in
the 1DPC is vpc=2.7c.

The excitation in Fig. 3 has a very smooth turn-on
�the amplitude of the pulse at the turn-on point is e−9,
whereas the peak amplitude is unity�. Figure 4 shows
the Wigner-Ville distribution of the aforementioned smooth

FIG. 3. �Color online� Pulse advancement in the 5-slab
1DPC.

FIG. 4. �Color online� Wigner-Ville distribution of the output

pulse with the smooth front excitation in the 5-slab 1DPC.
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pulse propagated through the 1DPC. It is similar to the time-
frequency distribution of the pulse that has propagated
in free space with Gaussian distribution both in time and
frequency.

The interesting question is whether or not the abnormal
behavior observed in Fig. 3 is consistent with the require-
ments of special relativity, which demands no information to
be transmitted faster than the speed of light in vacuum. It has
been argued that if an information-carrying signal is to be
presented as an entire function �function that is analytic on
the whole complex plane� extending in time from −� to +�,
then by definition the signal possesses an infinite number of
derivatives and the future and early behavior of the pulse can
be predicted by using Taylor expansion about any point in
time ��30� and references therein�. Therefore, a signal with-
out any turn-on point does not convey “genuine” informa-
tion. Furthermore, an information-carrying signal that is
physically realizable is a causal signal that has a beginning in
time and space �“front”�. Consequently, in a noiseless chan-
nel �as we have considered in all the simulations�, the earliest
time that the future value of the information carrying signal
can be predicted is t=0+, since t=0 by definition is a point of
nonanalyticity for which the Taylor expansion does not exist.
Therefore, the genuine information regarding the correct
value of a causal signal is contained within the time interval
beginning with t=0 �the “front”� and times immediately fol-
lowing it �precursors�.

Simulations in Fig. 3 were obtained for a pulse with a
very smooth front where the effects of the front are not easily
observed at the output. To observe the evolution of the front,
we have explicitly introduced an excitation that enforces the
front. For this excitation, a second-order nonanalyticity has
been introduced in the beginning of the pulse used in the
prior simulations. The excitation is zero at t=0, and the am-
plitude of the pulse increases smoothly with time �the enve-
lope is a second order polynomial� and at the point that the
amplitude of the pulse reaches e−2.25 �where the maximum of
the pulse is unity� the second-order nonanalyticity is intro-
duced by matching the second-order polynomial envelope
and the Gaussian envelope with parameters; Ts=3.11 ns,
t0=1.5
Ts. Figure 5�a� shows the envelope of this excitation
and the excitation with a smooth turn-on �E2�t� and E1�t�,
respectively� and Fig. 5�b� shows the frequency distribution
of this pulse compared to the frequency distribution of the
excitation with the smooth turn-on �E2�f� and E1�f�, respec-
tively�. Comparing the frequency distributions of the two
pulses shows that introducing the strong front adds small
amplitude, low and high frequency components �with respect
to the center frequency� to the frequency distribution of the
pulse with a smooth turn-on. The spectral content of these
frequencies can be controlled by the order of nonanalyticity
introduced. A higher order nonanalyticity renders the begin-
ning of the signal smoother and reduces the high-frequency
content of the associated precursor fields. Input reflection
�S11� of the 5-slab 1DPC calculated using FDTD is also
shown in Fig. 5�b�. Comparing the frequency distribution
of the excitation pulses to the S11 shows that the frequency
distribution of both pulses, with and without enforced
front, is still narrower than the stop-band of the 1DPC;
hence, the steady-state dispersion mechanism is similar for

both excitations.
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Figure 6 shows the pulse with enforced front that has
propagated through a 1DPC with 5 slabs and its Wigner-Ville
distribution. There are some cross-terms in Fig. 6 that appear
as discontinuous, symmetrical lines around the center fre-
quency. The only difference between the output pulse of the
5-slab 1DPC in this simulation with enforced front and the
output pulse in the previous simulation with smooth front is
the oscillations �“precursors”� in the early part of the pulse.
The maximum amplitude of these early oscillations is com-
parable to the maximum of the main pulse and they have a
Gaussian-type envelope. The JTFA shows that these precur-
sors include high and low frequencies that are not present in
the remaining part of the pulse and the low and high frequen-
cies appear simultaneously in the beginning. The fact that

FIG. 5. �Color online� �a� Envelope of the modulated Gaussian
excitation with �E2�t�� and without �E1�t�� enforced front. �b� Input
reflection coefficient �S11� of the 5-slab 1DPC and frequency distri-
bution of the excitations with �E2�f�� an without �E1�f�� enforced
front.

FIG. 6. �Color online� Wigner-Ville distribution of the output

pulse with the enforced front excitation in the 5-slab 1DPC.
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these frequencies have a continuous structure indicates that
they do not correspond to cross-terms.

Figure 7 shows that the peak of the pulse that has traveled
through the 1DPC appears in the output sooner than the peak
of the pulse that has traveled through free space. The ad-
vancement is approximately 495 ps, which is close to the
advancement of the pulse with a smooth front. As mentioned
earlier, group velocity is governed by the transmission func-
tion of the 1DPC �Eq. �9��. It can be seen in Fig. 5�b� that the
frequency distribution of both pulses, with and without en-
forced front, are inside the bandgap of the 1DPC; therefore,
the same steady-state mechanism applies to both of them and
the advancement in both cases is similar.

An interesting observation is that although the group
velocity is superluminal, it can clearly be seen in the
Fig. 7 inset that the early oscillations of the pulse that has
traveled through the 1DPC appear with a negligibly small
delay compared to the early oscillations of the pulse that has
traveled through the free-space. This effect can be explained
as follows. As a causal signal, the excitation used in our
FDTD simulations contains an unbounded spectrum of fre-
quencies. The front of the pulse, which is formed from large
frequency signal harmonics, will encounter an index of re-
fraction close to 1, effectively propagating as in a vacuum.
This is in agreement with the Sommerfeld and Brillouin re-
sults. In this experiment, the time it takes the front to propa-
gate through the 1DPC �Lpc=28.77 cm� is 0.964 03 ns and
the time it takes the front to travel through the same length in
free space is 0.959 70 ns. Based on these calculations we can
define an effective 1DPC index for the front �nef f =1.0045�,
which, as expected, is very close to the index of the free
space.

If one would model the dielectric slabs of the 1DPC as
possessing a dispersionless refractive index, the front would
appear to propagate with a subluminal velocity �31�. How-
ever, this would be a side effect of neglecting dispersion and
hence enforcing the propagation of the front through an ef-

FIG. 7. �Color online� Normalized Gaussian pulse with enforced
front at the output of the 1DPC compared to the same pulse that has
traveled the same length in free space.
fective medium composed of the combination of the dielec-
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tric slabs and free space, with an effective index that can be
defined as:

nave = ctave/Lpc, �11�

where

tave = ls/�c/n� + la/c . �12�

In the latter, ls and la are the total lengths of dielectric and air
regions through which the pulse propagates, while n=1.66 is
the assumed dielectric slab index. As a result, based on the
1DPC parameters in �31�, the average index is nave=1.0495.
We can also calculate nave, which is defined as

nave = ctpc/Lpc �13�

from the FDTD results, where tpc is the time it takes the
pulse to propagate from the source and the observation point.
In the numerical results of �31�, tpc=2.9079 ns and
Lpc=83.05 cm. Therefore, nave=1.0503, which is very close
to the value that was calculated numerically.

To further study the propagation of the front inside
the photonic crystal in another series of simulations, a 1DPC
with the same parameters as the previous simulations
but with different number of slabs has been considered.
Increasing the number of slabs slightly changes the disper-
sion characteristics of the structure and increases the attenu-
ation of the signal. Consequently, by increasing the number
of slabs we can study the attenuation rate of different
portions of the pulse. Figure 8 shows the output pulses for a
1DPC with different number of slabs. It clearly shows
that attenuation is not the same for different parts of the
pulse, and as the number of slabs is increased, the precursor
begins to separate from the remaining part of the pulse. In
the 5-slab 1DPC, the amplitude of the precursor is lower
than the main part of the pulse, but as the number of
slabs increases to 9, the amplitude of the precursor grows
larger than the main pulse. In other words, the decay rate for
the precursor is smaller than the decay rate for the
main pulse. For a 1DPC with 9-slab, the Gaussian pulse has
completely lost its coherence and does not have any distinct
maximum, while the precursor still has its initial Gaussian-
type shape. Another important observation about the
precursors is that in contrast with the main part of the signal
that has a constant delay, their delay increases with the num-
ber of the slabs. The reason that the delay of the main part of
the pulse remains almost constant is that its frequency con-
tent is inside the bandgap of the 1DPC, where its phase ad-
vancement is close to zero. On the other hand, the evolution
of the precursors takes place at a transient stage, where this
bandgap is still under formation, therefore allowing for a
nonzero delay of the precursors as they travel through the
1DPC.

Using the information in Fig. 8, we can compare
the behavior of the precursor and main part of the pulse
in terms of energy. To do this, we have used the term U,
which is proportional to energy of the signal, and it is defined

as
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U = �
t1

t2

�E�z = Lpc,t��2dt . �14�

Figure 9 shows the values of U that havebeen calculated
using the output signals in Fig. 8. The time spots t1 and t2 in
�14� are the beginning and the end of each segment of the
pulse. For example, for the precursor, t1 is the time at which
�for the first time� the pulse appears at the output and t2 is a
time between the precursor and the main signal for which the
pulse envelope is minimum �it is not necessarily zero�. On
the other hand, the main signal starts at the end of the pre-
cursor and ends as the signal disappears in the output sam-
pling point. It can be seen from Fig. 9 that the value of U for

FIG. 9. �Color online� The values of U for the precursor and the

main part of the pulse for different number of slabs.
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the main signal is almost 50 times of the one for precursors
for the 1DPC with five slabs. As the number of slabs
increases, we can say that the energy of the main signal
decreases drastically but the rate of attenuation �which is
proportional to the energy attenuation rate� for the precursors
is lower. For example, in the case of 1DPC with nine
slabs, the value of U for the main signal and precursors
are relatively comparable �the value of the U for the
main signal is three times the value of the U for the precur-
sors�. Based on the difference between the attenuation rate of
the main part of the signal and the precursors, the following
observation can be made. By continuously increasing the
number of slabs, the energy of the precursors can theoreti-
cally be made higher than the energy of the main part of
the signal. It has to be noted though that as the number of
slabs becomes greater than 12, both the main part of the
signal and the precursors die out, eliminating any clear dis-
tinction between themselves. However, the possibility of op-
timizing the form of the excitation in order to maximize the
precursors has been demonstrated for temporally dispersive
media, in �32�. The present paper paves the way for a future
investigation of similar possibilities for spatially dispersive
media.

V. SUMMARY AND CONCLUDING REMARKS

This paper describes the time and frequency evolution of
a modulated Gaussian pulse in a passive Lorentzian media
and a one-dimensional photonic crystal �1DPC� using the
finite-difference time-domain �FDTD� and joint time-
frequency analysis �JTFA�. Time and frequency evolution of
the precursors and the fact that their propagation velocity is

FIG. 8. �Color online� Propagation of the
Gaussian pulse inside the 1DPC with different
number of slabs.
subluminal has been verified. Despite the claim by the au-
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thors in reference �8�, asserting that they have demonstrated
superluminal information velocity using �smooth� signals by
means of under cut-off frequencies and without generating
further precursors, this does not seem to be true in practice.
In order to send a signal, some discontinuities have to be
created that in turn generate new precursors and if the signal
cannot overtake its precursors, then information cannot be
transmitted faster than light, in spite of the fact that group
velocity can be superluminal. An interesting point in these
simulations is that the front of the pulse is subluminally de-
layed as it travels through the structure. Therefore, although
the group velocity is superluminal, precursors which are the
�17� E. L. Bolda, R. Y. Chiao, and J. C. Garrison, Phys. Rev. A 48,
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genuine carriers of information, are not. This work also pre-
sents the combination of FDTD and JTFA as a tool that can
be used to study both the transient and steady state of the
time and frequency evolution of a pulse propagating inside a
complex dispersive medium.
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