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In a causally dispersive medium the signal arrival appears in the dynamical field evolution as an increase in
the field amplitude from that of the precursor fields to that of the steady-state signal. The interrelated effects of
phase dispersion and frequency dependent attenuation and/or amplification alter the pulse in such a fundamen-
tal way that results in the appearance of precursor fields. Although superluminal group velocities have been
found in various dispersive media, the pulse “front” and associated precursors will never travel faster than c,
and hence these are the vehicles through which relativistic causality is preserved. While many rigorous studies
of wave propagation and associated abnormal group velocities in passive Lorentzian media have been per-
formed, the corresponding problem in active media has remained theoretically unexplored. This problem is
addressed in the present paper, by employing the steepest descent method for the determination of the response
of an active Lorentzian medium to a step modulated pulse. The steepest descent method provides a detailed
description of the propagation of the pulse inside the dispersive medium in the time domain. Moreover, the
evolution of the saddle points illuminates the relation between the medium parameters and the temporal
evolution of the propagating pulse within the medium. Hence, useful physical insights are obtained and the
interesting differences between the passive and active case are deduced.
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I. INTRODUCTION

Wave propagation through a linear, temporally dispersive
medium has been a complex and sometimes controversial
research topic since the 19th century. In a dispersive me-
dium, each spectral component of the initial pulse propagates
with its own phase velocity and absorption-amplification
rate. Hence, the phase relation and the relative amplitudes
between the spectral components of the initial pulse change
as a pulse propagates inside the medium. Superluminal group
velocities which are the direct consequence of medium dis-
persion, have been theoretically predicted and experimen-
tally observed in various types of dispersive media, such as
Lorentzian media, one-dimensional photonic crystals, and
undersized waveguides �1–19�. Though superluminal group
velocities have been found in these media, it has been sug-
gested that the pulse “front” and associated transient field
oscillations, known as the precursors or forerunners, will
never travel faster than c, and hence relativistic causality is
always preserved �4�.

Sommerfeld and Brillouin were among the early research-
ers studying the wave propagation in linear, homogeneous,
isotropic, causally dispersive media �20�. They used the
asymptotic method of steepest descent to describe the propa-
gation of a modulated unit step signal of constant carrier
frequency ��c� in a semi-infinite single resonance passive
Lorentz medium. Their analysis led to the discovery of two
wave phenomena whose dynamical evolution preceded the
evolution of the main signal. They referred to these as fore-
runners or precursors. The first precursor �Sommerfeld’s pre-
cursor� determines the earliest time behavior of the wave
which also contains the highest frequency components of the
signal and the second precursor �Brillouin precursor� con-
tains the low frequency components. In addition to Brillouin
and Sommerfeld, other researchers, especially Oughstun and

co-workers have done an extensive work on the same topic
by refining and generalizing Sommerfeld and Brillouin work
�21–32�.

The possibility of superluminal propagation in an inverted
two-level atomic medium was considered by Chiao �10�. He
also mentions that the resulting superluminal propagation is
not a violation of relativistic causality, since the information
contained in the peak of the pulse is already included in the
forward tail. Recently, there has been experimental observa-
tion of superluminal velocities in active media �12,14�. In
light of these theoretical and experimental observations the
study of the precursor fields in such media deserves closer
attention. This problem is addressed in the present paper,
using the steepest descent method.

Asymptotic methods such as the steepest descent provide
a rigorous general solution to the problem of propagation in
causally dispersive media for pulses of arbitrary duration.
The method requires that the behavior of the complex phase
function appearing in the integral representation of the
propagated field be known throughout the complex fre-
quency plane. Therefore a specific model of the complex
refractive index is needed. The single-resonance Lorentz
model which is of general interest in optics, is used in this
paper.

This paper is organized as follows. In Sec. II, we present
the active Lorentzian medium, which is a model for an in-
verted two level atomic medium. In Sec. III, the superlumi-
nal propagation of a Gaussian pulse is calculated using the
inverse Fourier transform method. In Sec. IV, the general
formulation of the problem of wave propagation inside a
dispersive medium is provided. Section V includes the
asymptotic analysis of the wave propagation in an active
Lorentzian medium using the asymptotic technique of steep-
est descent method.
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II. LORENTZIAN MEDIUM WITH INVERTED ATOMIC
POPULATION

It is well known that the inversion of level populations in
an atomic material leads to gain for light tuned to the reso-
nance frequency of the two levels. The simplest example is a
Lorentzian dielectric with negative oscillator strength. Ignor-
ing the effect of inhomogeneous line broadening, the com-
plex index of refraction for the active Lorentzian is �10�

n��� = �1 +
�p

2

�2 − �0
2 + 2�i�

�1/2

, �1�

where, �0 is the frequency difference between the two levels
�resonance frequency�, �p is the plasma frequency, and � is
the linewidth of the resonance. In this model the square of
the atomic plasma frequency is defined as

�p
2 =

4�N�f �e2

m
, �2�

where f , N, e, and m are the oscillator strength, atomic den-
sity, electron charge, and mass, respectively. Due to the
population inversion in this model the oscillator strength is
negative and its negative sign is included in Eq. �1� explic-
itly. In typical situations, the inequalities ���p��0 are
obeyed. Based on these inequalities an arbitrary set of the
parameters for the active Lorentzian medium is chosen as,
�0=4.0�1015 Hz, �p=1.0�1015 Hz, �=0.2�1015 Hz. Fig-
ure 1 shows the plot of the real part of the refractive index of
the medium in inverted state �f �0� and in ground state �f
�0�. The important assumptions are that the system re-
sponds linearly to the classical electromagnetic field theory
and has a causal response, so that the Kramers-Kronig rela-
tions are valid. Based on Fig. 1 in the region below the
resonance the index is less than 1 and one expects to observe
negative or superluminal group velocity when the frequency
distribution of a signal is located in this region.

The branch points for n���, and hence, for ����, can be
directly determined by rewriting the complex refractive in-
dex as

n��� = ��2 − �1
2 + 2�i�

�2 − �0
2 + 2�i�

�1/2

= � �� − �+��� − �−�
�� − �+���� − �−��

�1/2

,

�3�

where

�1
2 = �0

2 − �p
2. �4�

The branch point locations are given by

�± = ± ��1
2 − �2 − i�, �±� = ± ��0

2 − �2 − i� . �5�

It is assumed that �0�� and �1��; therefore, both branch
points lie along the line ��=−� symmetrically located about
the imaginary axis. The branch lines chosen here consists of
the line segments �−��− and �+�+�, as shown in Fig. 2. The
complex refractive index n��� and the phase function ����
are analytic in the complex �-plane, except at the branch
points �±� and �±.

III. SUPERLUMINAL PROPAGATION IN AN ACTIVE
LORENTZIAN MEDIUM

As mentioned before, the possibility of superluminal
propagation in an inverted two-level atomic medium was
first considered by Chiao �10�. When the carrier frequency
detuned far outside the resonance frequency, on the low fre-
quency side the group velocity can be superluminal and for a
sufficiently long medium the exit pulse is well resolved from
a companion pulse traveling through an equal distance in
free space. In this simulation, inverse Fourier transform
method is used to calculate the time advancement of a
Gaussian modulated signal propagating in an active Lorent-
zian media. The input modulated Gaussian pulse propagating
in the positive z direction is given by

S�t� = exp	− � t − t0

Ts
�2
sin��ct� , �6�

where �c is the carrier frequency and the pulse is centered
around the time t0�0 at the z=0 plane with a full width at
1 /e point given by 2Ts. In this simulation the excitation pa-
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FIG. 1. �Color online� The real part of the refractive index for
the two-level atomic medium in inverted state �solid line� and
ground state �dashed line�.

FIG. 2. Branch points and branch cuts for the active single reso-
nance Lorentzian medium.
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rameters are �c=1�1015 Hz, Ts=1�10−14 s, and t0=3.035
�10−14 s. Figure 3 shows the normalized electric field of the
Gaussian pulse that has traveled the same length though the
active medium and free space. The peak of the pulse that has
traveled through the active medium reaches the sampling
point at z=1 �m approximately 0.0195 ps sooner than the
pulse that has traveled through the free space. The interesting
question is whether or not the abnormal behavior observed in
Fig. 3 is consistent with the requirements of special relativ-
ity, which demands no information to be transmitted faster
than the speed of light in vacuum. An information carrying
signal that is physically realizable is a causal signal that has
a beginning in time and space �“front”�. Consequently, in a
noiseless channel �as we have considered in all the simula-
tions�, the earliest time that the future value of the informa-
tion carrying signal can be predicted is t=0+, since t=0 by
definition is a point of nonanalyticity for which the Taylor
expansion does not exist. Therefore, the genuine information
regarding the correct value of a causal signal is contained
within the time interval beginning with t=0 �the “front”� and
times immediately following it �precursors�.

The excitation in Fig. 3 has a very smooth turn-on �the
amplitude of the pulse at the turn-on point is approximately
e−9, whereas the peak amplitude is unity�, therefore, the ef-
fects of the front are not easily observed at the output. To
observe the evolution of the front, we have studied the evo-
lution of a modulated step excitation that has a sharp turn on
in the beginning, hence, the effect of the front can clearly be
seen in the signal evolution. We have used the steepest de-
scent method to calculate the propagation of the pulse inside
the active medium. It gives us a complete description of the
time evolution of the signal and its relation to the phase
topography in the complex �-plane.

IV. INTEGRAL DESCRIPTION OF THE PLANE WAVE
PROPAGATION IN DISPERSIVE MEDIA

The integral representation of an arbitrary plane electro-
magnetic wave propagated in the positive z direction through

a linear, homogeneous, isotropic, temporally dispersive me-
dium occupying the half-space z�0 is given by �21�

A�z,t� =
1

2�
�

C

f̃���exp�i�k̃���z − �t�
d� , �7�

where the complex wave number k̃��� is given by

k̃��� =
�

c
n��� , �8�

with n��� being the complex index of refraction of the dis-

persive medium. Here, f̃��� is the Fourier transform of the
initial pulse f�t�=A�0, t� at the input plane at z=0 and A�z , t�
represents any scalar component of the electric field or mag-
netic field. In Eq. �7� for purposes of convergence, the con-
tour of integration C in the complex �-plane is the straight
line �=��+ ia, where ��=Re��� ranges from negative to
positive infinity and a is a fixed positive constant that is
greater than the abscissa of absolute convergence for the
function f�t� �33–35� �real and imaginary parts of a complex
function are written as Re�¯
 and Im�¯
 in this paper�.
Another form of Eq. �7� which is suitable for asymptotic
methods is

A�z,	� =
1

2�
�

C

f̃���exp� z

c
���,	��d� , �9�

where 	=ct /z is a dimensionless space-time parameter and

���,	� = i��n��� − 	� �10�

is a complex phase function. Based on the properties of the
Lorentzian model as a physically permissible model and the
fact that the excitation is real, the propagated field can be
written as �21�,

A�z,	� =
1

2�
Re	�

−
+ia

+
+ia

f̃���exp� z

c
���,	��d�
 . �11�

In the case of a modulated excitation with carrier frequency
�c, namely,

f�t� = u�t�sin��ct� , �12�

where u�t� is a unit step signal given as

u�t� = �0 for t � 0,

1 for t � 0,
� �13�

the integral representation of the propagated field is

A�z,	� = −
1

2�
Re	�

−
+ia

+
+ia 1

� − �c
exp� z

c
���,	��d�
 ,

�14�

for t�0 and is zero for t�0. The asymptotic calculation of
the integral in Eq. �14� is presented in the next section.
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FIG. 3. �Color online� Pulse advancement in an active medium
at z=1 �m ��t=0.0195 ps�.
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V. ASYMPTOTIC ANALYSIS OF THE PROPAGATION
OF A MODULATED STEP PULSE IN AN ACTIVE

LORENTZIAN MEDIUM

Asymptotic analysis of the integral in Eq. �14� includes
three steps. The first step is to determine the topography of
X�� ,	�, the real part of the complex phase function
���� ,	�=X�� ,	�+ iY�� ,	��, on the complex �-plane. The
second step is to determine the location of the saddle points
of ��� ,	�. With all the information in hand, the third step is
to calculate the total field at each value of 	 for a predefined
observation point.

A. Numerical calculation of the topography of X„� ,�…

In this section we will study the behavior of X�� ,	�
=Re���� ,	�
 with contour plots of X�� ,	� in the upper half
of the complex �-plane. These plots give us a picture of the
topography of X�� ,	� in order to determine the number of
saddle points of ��� ,	� and their locations. These plots can
also be used to find the approximate locations of the de-
formed contour of integration that passes through these
saddle points. Using medium parameters �0=4.0�1015 Hz,
�p=1.0�1015 Hz, �=0.2�1015 Hz the contours of the real
phase function X�� ,	� in the upper half of the complex
�-plane are plotted in Figs. 4–6 for different values of the
parameter 	. In Fig. 4 the value of 	 is very close to 1 and we
can clearly see two first order saddle points on the imaginary
axis. Comparing the value of X�� ,	� at the location of the
saddle points shows that the saddle point that is closer to the
origin is dominant. In Fig. 5, at 	=1.003 64, the two saddle
points coalesce into one second order saddle point. In Fig. 6,
	 is greater than 	=1.0036 and the two first order saddle
points appear symmetrically on both sides of the imaginary
axis.

B. Numerical determination of the location of the saddle
points

In this section we numerically calculate the exact loca-
tions of the saddle points in the complex �-plane. The phase

function ��� ,	� is stationary at a saddle point, therefore,

����,	� = i�n��� − 	� + i�n���� = 0, �15�

where prime represents the first order derivative with respect
to �. Using the expression for the complex refractive index,
�Eq. �1�� the saddle point locations are given by the solution
of the equation

�1 +
�p

2

�2 − �0
2 + 2�i�

�1/2

−
�p

2��� + �i�

�2 − �0
2 + 2�i�	�1 +

�p
2

�2 − �0
2 + 2�i�

�1/2
 − 	 = 0.

�16�

Based on the phase plots in Figs. 4–6 we can picture the
path of the saddle points in the complex �-plane. Figure 7
shows a general picture of the two saddle points path that are
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FIG. 4. �Color online� Contours of X�� ,	� on the upper-half of
the complex �-plane for 	=1.0025.
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FIG. 5. �Color online� Contours of X�� ,	� on the upper-half of
the complex �-plane for 	=1.003 64.
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above the branch cuts in the complex �-plane. The other two
saddle points evolve in a similar manner that is symmetric
with respect to the branch cuts. After some manipulation, Eq.
�16� turns into an eight order polynomial. The phase plots
help us to identify the four roots that are the saddle points of
the phase function on the complex �-plane. The numerical
results for the saddle points locations as a function of 	 are
plotted in Fig. 8. The saddle points in the upper-half-plane
�SPUHP� are on the imaginary axis for 	=1 and as 	 increases
from unity one of them moves down from infinity on the
imaginary � axis and the other one moves up on the imagi-
nary axis �Fig. 8�a��. At 	=	1=1.003 64 these two saddle
points join together and form a second order saddle point.
For 	 greater than 	1 two first order saddle points leave the
imaginary axis symmetrically, in opposite directions and
move towards the branch points �Fig. 8�b��. As 	→ +
 the
UHP saddle points get very close to the branch points �+� and
�−�. The saddle points on the lower-half-plane �SPLHP� are on
the imaginary axis at 	=1 and as 	 increases from unity one

of them moves down and the other one moves up and at 	
=1.0043 they join together and form a second order saddle
point. As 	 increases they leave the imaginary axis and move
towards the branch points symmetric with respect to the
imaginary axis in opposite directions.

C. Asymptotic calculation of the field A„z ,�…

Equipped with the knowledge of the topography of the
phase function ��� ,	� and the dynamics of its saddle points,
it is now possible to perform the asymptotic calculation of
the field A�z ,	� as given by Eq. �14�. The first step in the
asymptotic calculation of the field A�z ,	� is to deform the
original contour of integration to the steepest descent path. It
is assumed that ũ��−�c� �the Fourier transform of the modu-
lated unit step excitation� is analytic in the complex �-plane
except for a countable number of isolated points where it
may have poles. For our modulated unit step function, u�t�,
the Fourier transform, ũ��−�c� only has a single pole at �
=�c=1�1015 Hz. The contribution of the simple pole sin-
gularity at �=�c occurs when the original integration path
passes the pole at �c. We assume that the original path of
integration and the steepest descent path lie on the same side
of the pole for 	�	s and on opposite sides for 	�	s �at 	
=	s the real part of the phase function at the saddle point that
interacts with the pole is equal to the real part of the phase
function at the frequency of the pole�.

The asymptotic approximation of the field A�z ,	� is
�36,21�

A�z,	� = Asp�z,	� + Ac�z,	� , �17�

where, Asp is the contribution of the saddle points and Ac is
the contribution of the pole. As mentioned before for values
of 	 close to 1 there are two saddle points in the UHP of the
complex �-plane. The one that moves upwards is the domi-
nant saddle point, therefore, for 1�	�	1, the contribution
of the saddle points is given as

Asp�z,	� � Re�� − 2�

�z/c�����sp,	�
f̃��sp�e�z/c����sp,	�� ,

z → 
 , �18�

where ����c ,	� is the second derivative of the ��� ,	� with
respect to frequency at �=�c. At 	=	1 the two saddle points
on the upper-half of the imaginary axis join and form a sec-
ond order saddle point. The contribution of the saddle points
at 	1 is given as

Asp�z,	1� � Re	e�z/c����sp,	���1

3
��a0

+��sp,	� − a0
−��sp,	��

�� c

z
�1/3
, z → 
 , �19�

where ��¯� is the well-known gamma function and
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FIG. 7. Locations of the upper-half-plane saddle points as a
function of 	.
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a0��sp,	� =
f̃��sp�

3
�− ��3���sp,	�

3!
��−1/3�

. �20�

The terms a0
+ and a0

− are different values of the multivalue
complex function, a0, for the integration paths which extend
from �sp to +
 and from �sp to −
, respectively. The term
��3��w� which is the third derivative of ���� with respect to
frequency.

As 	 increases �	�	1� the saddle points on the UHP
leave the imaginary axis and move away from the imaginary
axis in opposite directions. One of these saddle points moves
towards the branch cut on the right-half-plane and the other
one moves towards the branch cut on the left-half-plane.
Therefore, the integration path for 	�	1 goes through two
first order saddle points and the contribution of these saddle
points is given as

Asp��,	� = Asp
r ��,	� + Asp

l ��,	� , �21�

where Asp
r �� ,	� and Asp

l �� ,	� are the contributions of the
first order saddle points on the right- and left-half-planes,
respectively. Both Asp

r �� ,	� and Asp
l �� ,	� are calculated us-

ing Eq. �18�. Figure 9 shows the portion of the pulse that is
due to the saddle points.

The residue contribution of the pole appears for 	�	s,
where, the value of 	s is given by the expression

X��sp,	s� = X��c,	s� , �22�

where �sp is the saddle point that interacts with the pole
singularity. The terms X��sp ,	� and X��c ,	� are the real part
of the phase function at the angular frequency of the corre-
sponding saddle point and the pole of the excitation at each
value of 	, respectively. The contribution of the pole, Ac�z ,	�
is given as

Ac�z,	� = − 2�i Re�
�	�� , �23�

where


�	� = 0 for 	 � 	s, �24�


�	s� =
1

2

1

2�
i�e�z/c����c,	s� for 	 = 	s, �25�


�	� =
1

2�
i�e�z/c����c,	� for 	 � 	s, �26�

where

� = lim
�→�c

��� − �c� f̃���� . �27�

The asymptotic approximation of the total field 1 �m in-
side the active Lorentzian is plotted in Fig. 10�a� for 1�	
�1.0038 and Fig. 10�b� for 1.0038�	�14. As it can be
seen from the inset of Fig. 10�a� there is high frequency
oscillation for 1�	�	1 that is due the saddle points on the
imaginary axis. At 	=	s=1.23 the steepest descent path
passes the pole and the transient, due to both the saddle
points and the pole that appear. As 	 increases the contribu-
tion of the saddle points fades and the steady-state part of the
signal that is solely due to the pole becomes dominant. The
result presented here is validated using the inverse Fourier
transform technique �37� for 1.0038�	�14 in Fig. 10�b�.
There is good agreement between the two techniques. The
number of points needed to confirm the asymptotic result in
the range 1�	�1.0038 is extremely large and cannot be
practically calculated via the Fourier transform. It shows that
asymptotic techniques such as steepest descent method are
powerful in studying the transient response in dispersive me-
dia.

As demonstrated in Sec. III, the peak of a Gaussian pulse
can travel with a superluminal group velocity inside an ac-
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tive Lorentzian medium. Considering the case of a step-like
envelope excitation that is zero for t�0, the following ob-
servation can be made. At z=0, the propagated field inside
the medium can be nonzero for 	�1 only if the field propa-
gates with a front velocity greater than the vacuum speed of
light c which violates the principle of relativistic causality.
The asymptotic calculations provide the description of the
temporal evolution of the signal for t�0. However, it can be
mathematically proved that no signal �information� may be
detected before t=0, by the contour integration of Eq. �11�.
First, the integral of Eq. �11� can be evaluated by closing the
contour over the upper-half-plane. Moreover, the require-
ment that the medium is causal and that the incident signal
has a “front,” can be employed to show that the value of the
integral is identically zero for 	�1 �for velocities that are
less than the speed of light, c�. The detailed mathematical
proof, which is based on Jordan’s lemma and the Cauchy
theorem, can be found in �22�.

VI. COMPARISON OF THE PASSIVE AND ACTIVE
LORENTZIAN

As mentioned in Sec. II, the complex index of refraction
of the active Lorentzian, ignoring the effect of inhomoge-
neous line broadening, is similar to the passive Lorentzian
index, except for the sign of the oscillator strength which is
negative. For both active and passive media, the index of
refraction and therefore, the phase function, have two poles
and two zeros on the complex �-plane. Hence, in both cases
the phase function has four saddle points. On the other hand,
the evolution of the saddle points in these two media is com-
pletely different. In passive Lorentzian, the pair of the saddle
points which corresponds to the Sommerfeld precursors is at
���→
 for 	→1, while the pair of the saddle points which
corresponds to the Brillouin precursors is on the imaginary
axis. Both sets move towards the branch points as 	 in-
creases. For the active medium, all four saddle points are on
the imaginary axis as 	→1. As mentioned in Sec. V B, a pair
of saddle points is on the positive imaginary axis and a sec-
ond pair is on the negative imaginary axis. Moreover, in the
passive medium case, the saddle points at ����→
 are domi-
nant for 	→1. As 	 increases �yet before the excitation pole
becomes dominant�, the second pair of saddle points, which
are close to origin, tends to dominate. In the active medium

case, the saddle point which moves upwards on the positive
imaginary axis is dominant for 	→1 and as 	 increases the
excitation pole becomes dominant. The physical meaning of
these differences in the evolution of the saddle points is as
follows. While both Sommerfeld and Brillouin precursors
can be excited in passive media, the former are not present in
active media. In addition, the transient part of the signal
�which is due to the saddle points� and the main part of the
signal �which is due the pole of the excitation� appear almost
concurrently. �See Refs. �38–41�.�

VII. SUMMARY AND DISCUSSION

This paper presented a study of pulse propagation in an
active Lorentzian media, aimed at illuminating their transient
response. It was shown that while superluminal group veloci-
ties are possible in such media, these velocities are compat-
ible with relativistic causality. In particular, the causal propa-
gation of the front of a Gaussian pulse inside an active
medium was demonstrated, despite the fact that the pulse
envelope itself was propagating superluminally. Then, the
steepest descent method was employed for the thorough in-
vestigation of the transient response of active media, with the
goal of identifying precursor fields that can be supported in
these media, along the lines of the passive case. In particular,
the propagation of a step-modulated signal was studied. It
was shown that Sommerfeld precursors are not excited in
active media, while the transient part of a propagating signal
is almost indistinguishable from the main part. These obser-
vations are in stark contrast with the evolution of distinct
Sommerfeld and Brillouin precursor fields prior to the main
signal in passive Lorentzian media. More accurate descrip-
tion of the signal evolution in active media can be achieved
using a higher order approximation for the propagation inte-
gral. Note that our study does not include saturation and
associated nonlinear effects in active media. The study of
their impact on the transient response of the medium can be
the subject of future work.
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