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Dielectric spheres which are much smaller than a wavelength and made of a large permittivity can support
magnetic dipole modes of great purity. We investigate the coupling of such magnetic dipoles by studying sub-
wavelength dielectric spheres arranged in clusters as pairs, chains, and rings. The coupling among the spheres
creates hybridized modes, which may be used to engineer metamaterials with more degrees of freedom than by
using single particles. Two methods of analysis are used: an approximate coupled dipole model and an exact
transition-matrix approach. An experimental setup employs a focused Gaussian beam excitation. The magnetic
coupling presented here is similar to the coupling of plasmonic modes in metal nanoparticles. Therefore, these
experimental results are also a verification of several analogous plasmonic systems. © 2010 Optical Society of
America
OCIS codes: 260.2110, 290.4020, 290.4210, 160.3918.
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. INTRODUCTION
here have been recent reports on magnetic metamateri-
ls made of dielectric spheres. The spheres can have an
nduced magnetic dipole resonance in the long-
avelength regime if they are made from a material with
very large permittivity, which creates induced magnetic
oments in the spheres. A large number of such spheres,

ossibly as a periodic structure, would acquire a bulk
agnetization and an effective permeability. The reso-
ant frequency depends on the sphere material, which
ight be ferroelectric for microwave resonances [1,2] or

ielectric with phonon-polaritonic resonances in the infra-
ed [3–6]. Recent experimental results have been ob-
ained in the microwave range of a negative permeability
n a cubic arrangement of ferroelectric cubes [7], as well
s a negative index in ferroelectric rods [8]. In the infra-
ed, the magnetic dipole resonance of single isolated SiC
hiskers has been observed [9], and the bulk magnetic re-

ponse of a random powder of SiC micro-particles has
een measured [6].
A greater variety and flexibility of metamaterial prop-

rties may be obtained by increasing the complexity of the
onstituents beyond that of single particles. In order to do
o, in this paper we consider clusters of particles, which
llows near-field coupling within the cluster itself. The
articles comprising the clusters will remain spherical.
rtificial materials made with clusters for basis units
ave been studied before, where the clusters are rings of
lasmonic spheres having a net magnetic moment [10,11],
r arrangements of many metal nanospheres or nano-
ires into lattices forming larger (but still microscopic)

pheres [12] or rods [13]. Such structures have been
ubbed meta-metamaterials [12]. However, these designs
ave yet to be validated experimentally.
0740-3224/10/051083-9/$15.00 © 2
In this paper we investigate analytically and experi-
entally the effects of near-field coupling among induced
agnetic dipoles in sub-wavelength sized clusters of large

ermittivity spheres. In terms of the dipolar fields exter-
al to the spheres, this situation is an exact electromag-
etic dual of the electric dipoles induced in plasmonic
etal nanoparticles. However, since the underlying

hysical mechanism is different for the two cases, several
istinguishing features can be noted. In the case pre-
ented here, the magnetic dipole modes are virtual bulk
avity modes, whereas the modes in plasmonic particles
re supported by the electric surface charges, resulting in
uniform internal field. More importantly, however, is

hat the dispersionless large permittivity spheres used
ere allow “pure” magnetic dipoles, with negligible contri-
utions by higher multipole terms, whereas plasmonic
odes—due to the dispersion of metals—have many spec-

rally adjacent multipole resonances [14] which can cause
dditional complexity in the coupled interactions [15].
owever, the magnetic dipole interactions studied here

emain generally analogous to plasmonic systems,
hether in terms of metamaterial properties [10–13],
lasmon chemistry [15–17], local-field enhancement
15,18], or waveguiding [19]. Therefore, beyond the intrin-
ic interest in coupling in sub-wavelength induced mag-
etic dipole modes, the theoretical and experimental re-
ults presented here are important to the study of such
lasmonic systems.
The experimental results presented here are in the mi-

rowave domain, which simplifies the experimentation.
owever, the principles of coupling of induced magnetic
ipoles in systems of dielectric particles, which are the
rimary concern of this paper, scale to infrared and opti-
al frequencies; only the specification of the dielectric
010 Optical Society of America
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unctions of the particles would change. We stress that
agnetic dipole responses from sub-wavelength sized SiC

articles have indeed been measured in the infrared [6,9].
owever, it is somewhat difficult to prepare acceptable
uality SiC micron-sized spheres and to arrange into pre-
ise clusters. To temporarily avoid these difficulties, we
resent an initial verification of these principles at micro-
ave frequencies, using particles with manageable sizes

�1 mm�.
All of the cases studied here, such as pairs, short linear

hains, and rings, demonstrate the hybridization of mag-
etic dipole modes, which is analogous to atomic bonding.
hile hybridization of plasmonic dipoles, or plasmon

hemistry, has been studied before [16,17], the results of
ybridized magnetic dipole coupling are novel. In particu-

ar, the case of ring clusters presented here demonstrates
hat different arrangements of bonding create various ef-
ective electric or magnetic multipole modes of the cluster,
aking them useful for the design of metamaterial inclu-

ions. In particular, it is shown and experimentally veri-
ed that an effective electric dipole mode is caused
trictly by hybridized magnetic dipole coupling (in a cir-
ulating loop of displacement magnetic current guided by
he spheres), thereby experimentally validating an elec-
romagnetic dual to the idea proposed in [10].

Two analytical methods are applied here. The first is an
pproximate coupled dipole model (CDM), which is simi-
ar to the analysis of coupled electric dipoles in plasmonic
pheres [20,21]. Exact calculations are performed using
he transition-matrix (T-matrix) approach [22,23], which
llows for the calculation of multiple scattering by aggre-
ates of particles [24,25]. The T-matrix approach and
imilar numerical techniques have been used to study the
ultiple scattering of systems of particles comparable in

ize to the wavelength [23,26–29], as well as in plasmonic
lusters and chains [15,18,30,31].

This paper is organized as follows. In Section 2 we out-
ine the analytical model and numerical methods used to
alculate the normal modes and scattering properties of
he clusters of spheres, and we also derive the effective
edia values from the results. In Section 3 we present the

esign of our microwave transmission experiments using
aussian beam principles. The theoretical and experi-
ental results are shown in Section 4, and Section 5 con-

ludes the paper.

. THEORY
he electromagnetic scattering of a plane wave by an iso-

ated sphere can be calculated using Mie theory [14],
hich involves decomposing the scattered field into a sum
f multipole terms. The magnetic dipole portion of the re-
ponse is of prominent interest in this work. Consider an
solated sphere of radius rs, relative permittivity �s=ns

2,
nd unit relative permeability, in a free-space host
nh=1�. The units will be in SI throughout. The incident
lane wave is given by

Hinc�r� = H0
inc exp�ikinc · r�, �1�

here H0
inc=H0ŷ, kinc=k0ẑ= �� /c�ẑ is the incident

avevector, and c is the velocity of light in free space. The
agnetic dipole portion of the field scattered by the
phere is proportional to [14]

b1 =
nh�1�xs��1��xh� − ns�1�xh��1��xs�

nh�1�xs��1��xh� − ns�1�xh��1��xs�
, �2�

here xs=nsk0rs, xh=nhk0rs, �1�z� and ��z� are Riccati–
essel functions, and the primes denote differentiation
ith respect to the argument. Thus a magnetic dipole mo-
ent m is induced, and the magnetic polarizability �m of

he sphere, defined by m=�mH0
inc, is [4]

�m =
6�i

k0
3 b1. �3�

For most common materials, the magnetic dipole re-
ponse b1 of a sub-wavelength sphere ��0 /2rs�10� is usu-
lly 1 order of magnitude smaller than its electric dipole
esponse. There is, however, a situation where a non-
agnetic sphere can have a dominant long-wavelength
agnetic response [3–5]. Equating the denominator of
q. (2) to zero and using the long-wavelength condition

h	1, the resonant frequency fm of the magnetic dipole
esonance is [4]

fm � c/2nsrs. �4�

or sub-wavelength spheres this resonant condition can
nly be satisfied if the spheres are made of a large permit-
ivity, �s�100. In this paper we will consider spheres
ade of a mixture of oxides, with permittivity �s=112
0.1i. For this case, the dominance of the magnetic dipole
cattering over the electric dipole and the quadrupole
erms can be seen in Fig. 1. Thus such a sphere to a good
pproximation acts as a magnetic dipole, for the fre-
uency range roughly between 11 and 15 GHz.

. Coupled Ideal Magnetic Dipoles
hen two or more spheres are closely spaced, they may

nteract strongly. Since our sub-wavelength dielectric
pheres approximate ideal electrodynamic magnetic di-
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oles, a cluster of such spheres can be modeled by a sys-
em of linear equations. We will use the equations to es-
imate the resonant frequencies, normal modes, and
xtinction cross sections.

The magnetic field radiated by a magnetic dipole is [32]

H�r� =
eik0r

4�
�k0

2

r
�I − r̂r̂� + �3r̂r̂ − I�� 1

r3 −
ik0

r2 �� · m

= G�r� · m, �5�

here G�r� is the Green’s dyadic and I is the identity dy-
dic. The coordinate origin is the site of m. For a system
f Ns spheres, located at xj �1
 j
Ns�, the local field at
article j is

Hloc�xj� = Hinc�xj� + 	
k�j

Ns

Hk�xj − xk�, �6�

here Hk�r�=G�r� ·mk is the magnetic field due to the
oment mk of particle k. The local field at sphere j in-

uces a moment mj=�mHloc�xj�, where �m is given ap-
roximately by Eq. (3). For a cluster of identical spheres
q. (6) becomes

1

�m
mj − 	

k�j

Ns

G�xj − xk� · mk = Hinc�xj�. �7�

hese are the master equations for the CDM.
To estimate the resonant frequencies and to evaluate

he normal mode patterns, the incident field can be re-
oved by setting the right-hand side of Eq. (7) to zero. As

n example, this situation will be evaluated for a linear
hain. Since the incident magnetic field is y-polarized,

k=mkŷ. Then the coefficients of mk in the homogeneous
quivalent to Eq. (7) form the elements of a matrix A,

Ajk =
1/�m, j = k

− ŷ · G�xj − xk� · y,ˆ j � k� . �8�

his matrix is frequency dependent, so a straightforward
ay to find the resonant modes is to sweep the frequency,
ach time of diagonalizing the matrix. The eigenvectors
re hybridized modes, which represent the cluster as a
hole, with no external couplings. The eigenvalues � are

requency dependent, and frequencies that best satisfy
he condition of singularity �=0 are resonant frequencies.
he corresponding configuration of the magnetic dipole
ectors induced in each sphere is given by the associated
igenvector.

We will also present results for a ring of four identical
pheres. In this case there are two components to the
agnetic dipole moment of each sphere, so Eq. (7) is com-

rised of eight equations, and a matrix similar to Eq. (8)
an be constructed.

The extinction cross section can be calculated from the
ptical extinction theorem [23,33]. To do so, we require
he vector scattering amplitude,
F�r̂� = re−ik0rHsca =
k0

2

4�	
j=1

Ns

�mj − �mj · r̂�r̂
exp�− ik0r̂ · xj�,

�9�

here mj are the solutions of the forced coupled system
7), and Hsca is the total scattered magnetic field in the
ar-field approximation. Then the extinction cross section
s

Cext =
4�

k0�H0
inc�2

Im�F�k̂inc� · H0
inc�. �10�

. Numerical Solution Using the Transition-Matrix
pproach

n contrast to the approximate coupled dipole mode, the
-matrix approach is exact in principle; the only limita-

ion is set by the upper limit on the number of multipoles
or practical implementation. This method improves upon
he coupled dipole method of the previous section because
ll multipole terms can be included. In this paper the
ominance of the magnetic dipole modes (Fig. 1) over all
ther higher-order multipoles means that this improve-
ent will only be apparent for very closely spaced

pheres. The T-matrix approach is generally flexible
nough to handle clusters of particles with arbitrary ge-
metry, material composition, and particle shape.

In this approach, all of the fields are expanded in the
asis of vector spherical waves about the origin. An inci-
ent electric field with amplitude E0 is expanded as

Einc�r� = E0 Rg �T�k0r� · a, �11�

nd a scattered field is expanded as

Esca�r� = E0�T�k0r� · f, �12�

here the superscript T denotes vector transposition. The
olumn vectors a and f contain the expansion coefficients,
nd the arrays Rg ��k0r� and ��k0r� contain the vector
pherical wave basis functions, as elaborated in the
ppendix. These basis functions are analogous to atomic
rbitals, such that the multipole order l=1,2,3, . . . corre-
ponds to the orbital quantum number and −l
m
 l cor-
esponds to the magnetic quantum number. For numeri-
al calculations the expansions are truncated at l= lmax so
hat the vectors a and f, which are henceforth all that
re needed to represent the fields, each have Lmax
2lmax�lmax+2� components.
Although the incident field can be arbitrary, we con-

ider only the plane wave (1), whose corresponding elec-
ric field has a vector of expansion coefficients a with the
ollowing components:

alm
M = il+1���2l + 1���m,+1 + �m,−1�,

alm
N = il+1���2l + 1���m,+1 − �m,−1�, �13�

here �lm is the Kronecker delta.
The scattering properties of an isolated single particle

re completely specified by its one-body matrix T1, where
he subscript indicates that there is only a single particle
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n the problem. This matrix operates on the incident field
ector to produce the scattered field,

f = T1 · a. �14�

he elements of T1 can be calculated by knowing the size
nd shape of the particle, as well as the permittivity and
ermeability of the particle and host [23]. We will only
onsider spherical particles, for which the matrix is diag-
nal, such that flm

M =−blalm
M and flm

N =−alalm
N , where al and

l are the Mie coefficients [14], which describe the ampli-
udes of electric and magnetic l-multipole scattering, re-
pectively.

Now consider a cluster of Ns particles, located at xj
1
 j
Ns� as shown in Fig. 2. The scattering by each
phere in isolation is described by T1

�j�. The cluster can be
odeled by a matrix Tclust, such that the total scattered
eld is

f = Tclust · a, �15�

here

Tclust = 	
j,k=1

Ns

J�0,j� · TNs

�j,k� · J�k,0�. �16�

�j,k�=J�k0xj−k0xk� are regular vector translation matri-
es, which translate the regular vector spherical waves
entered at xj from those at xk [25]. TNs

�j,k� are scatterer-
entered T matrices, which may be calculated from T1

�j�

nd xj for each of the Ns particles using an efficient and
umerically stable recursive algorithm [25].
The extinction cross section Cext may be calculated with

25]

Cext =
− 1

k0
2 Re�a† · Tclust · a�

=
− 1

k0
2 	

j,k=1

Ns

Re�exp�ik0ẑ · �xk − xj�
a† · TNs

�j,k� · a�,

�17�

here † is the Hermitian adjoint operator. The second of
hese expressions is a simplification which is only valid
or the particular incident plane wave corresponding to
q. (1), where the propagation direction is ẑ, the electric

T
(1)
1

T
(2)
1

T
( j)
1

T
(Ns)
1

x1

x2

x j

xNs

a

f

Tclust

ig. 2. (Color online) A cluster of Ns particles, bounded by a
ashed sphere. Particle j, in isolation, is modeled by T1

�j�, and af-
er calculating the multiple scattering solution the cluster within
he dashed boundary is modeled by Tclust. The incident wave is
epresented by a, and f is the total scattered field.
eld is x̂-polarized, and the expansion coefficients a are
s in Eq. (13).

. Metamaterials with a Cluster Basis
n addition to calculating the scattering of small clusters,
e also consider their use as the basis units in a periodic
etamaterial. Not only should the spheres be much

maller than a wavelength for this concept to be useful,
ut so should the cluster itself. The Ns particle cluster, en-
losed by a spherical boundary, is shown in Fig. 2. If the
luster has electric and magnetic polarizabilities �e,xx and
m,yy, then the effective permittivity �r,xx

eff and permeabil-
ty �r,yy

eff of a periodic composite can be found using the
lausius–Mossotti relations,

�r,xx
eff − 1

�r,xx
eff + 2

=
N

3 � 1

�e,xx
+ i� k0

3

6�
��−1

, �18a�

�r,yy
eff − 1

�r,yy
eff + 2

=
N

3 � 1

�m,yy
+ i� k0

3

6�
��−1

, �18b�

here the cluster density is N. The second term in the
quare brackets, which is not often included in the
lausius–Mossotti relations, cancels the scattering losses

ncluded within the polarizability of the first term. In-
eed, a periodic metamaterial in the long-wavelength
imit should have no scattering losses [34].

The polarizabilities required in Eqs. (18) are propor-
ional to the scattered dipole fields f1m. For example, the
agnetic dipole portion of the scattered electric field is

ransverse to r̂ �TEr�, making it the f1m
M M1m�k0r� terms of

q. (12). This portion of the scattered field can be equated
o that from an ideal magnetic dipole [32],

Edipole
sca =


0k0
3

4�
�r̂ � m�h1

�1��k0r�, �19�

here 
0=��0 /�0. The comparison yields

m = − E0

�3�


0k0
3 ��f1,−1

M − f1,1
M �x̂ − i�f1,−1

M + f1,1
M �ŷ + �2f1,0

M ẑ
.

�20�

ince we are considering only the plane wave defined by
q. (1), the incident magnetic field has only a ŷ compo-
ent, so the magnetic polarizability �m,yy is

�m,yy = �my

Hy
�

Hx=Hz=0

=
i�3�

k0
3 �f1,−1

M + f1,1
M �. �21�

he dual case of the comparison between the TMr scat-
ered electric dipole field and an ideal electric dipole
ource yields

�e,xx = � px

�0Ex
�

Ey=Ez=0

=
�3�

ik0
3 �f1,−1

N − f1,1
N �. �22�

These expressions can be verified for the trivial case of
single spherical particle. Then the polarizabilities are

calars, so �e=�e,xx and �m=�m,yy, and the results match
q. (3) and the equivalent expression for � .
e
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. EXPERIMENTAL SETUP
. Gaussian Beam Design

n the theory we have assumed that the clusters are ex-
ited by a plane wave. This can be approximated experi-
entally at microwave frequencies (12–18 GHz) with a

yramidal horn source and a dielectric lens for focusing,
s shown in Fig. 3, and a mirror image of the system cap-
ures the transmitted signal. The Rexolite biconvex lens
s approximately dL=7.5 cm thick along its axis and has a
efractive index of nL=1.59. The surface facing the horn
as a focal length of f1=18.68 cm corresponding to a ra-
ius of R1=11 cm, and the surface facing the sample has a
ocal length of f2=29.00 cm corresponding to a radius of

2=−17.1 cm.
The shape of a pyramidal horn has been shown to be

ufficient to map it into Gaussian optics [35]. The horn
perture dimensions are wH=4.29 cm in the H-plane and
E=3.30 cm in the E-plane, which provide an approxi-
ate average beam width at the aperture, wa= �0.35wH
0.5wE� /2. The pyramidal slant lengths in each plane are
H=10.13 cm and SE=8.36 cm, which result in an ap-
roximate average wavefront radius Ra= �SH+SE� /2 in
he aperture plane.

The beam needs to be focused to a waist where the
amples are placed. To approximate a plane wave, there
re two requirements. First, to ensure that the field am-
litude is uniform over the samples, the beam waist at
he sample w0,s must be much larger than the transverse
xtent of the samples. Second, to ensure that the wave-
ronts are planar, the Rayleigh range z0,s must be much
arger than the longitudinal extent of the samples. In our
esign we have chosen the distance from the horn aper-
ure to the front of the lens to be d1=15 cm, and simple
aussian beam principles [36] yield the spacing between

he back of the lens and the sample to be d2=30 cm, the
eam waist at the sample plane to be w0,s=2.7 cm, and
he Rayleigh range at the sample to be z0,s=11.7 cm. The
atter two dimensions are indeed much larger than the
amples, ensuring a plane wave excitation.

. Transmission Measurements
sample placed at the focused beam waist will scatter

ower in all directions, the total of which is removed from
he incident wave. By the optical theorem, the total of
cattering and absorption (which is nearly absent in our
amples) is proportional to the extinction cross section
ext. Therefore, the normalized transmittance through

Ra

wa

d1

nL w0,s

z0,s

d2dL

ig. 3. Schematic of the microwave horn and dielectric lens
sed to focus a Gaussian beam over a sample sphere. The setup

s completed by the mirror image to receive the signal. Some of
he curved wavefronts are shown with dashed lines; notice that
here is a beam waist within the horn, not at its aperture.
he system Tcalc is the ratio of the intensity measured
ith the sample in place, It, to that with no sample, I0,
hich is approximately

Tcalc =
It

I0
� 1 −

Cext

Ab
, �23�

here Ab=�w0,s
2 /0.86 is the transverse area of the beam

t the sample plane and w0,s is the beam waist. The factor
f 1/0.86 is due to the definition of the beam width as the
/e distance, so only 86% of the power in the beam is con-
ained within the cylinder defined by the waist.

A sample holder was made from polystyrene foam,
hich is essentially transparent to microwaves. The
orns were connected to an HP 8722C vector network
nalyzer, allowing for the measurement of the transmis-
ion magnitude �S21�. The system was calibrated by first
aving a measurement of the transmitted powder density
0� �S21�2 without a sample in place. Then a sample was
nserted and another measurement was taken It� �S21�2.
he ratio of these measurements yields the normalized

ransmittance Tmeas=IT /I0, which may be compared with
q. (23). This process removes the effects of the horns,

enses, and sample holder. Furthermore, 0.2% smoothing
nd 16 sample averages were used to minimize the noise
n these sensitive measurements. The resulting measure-

ents continue to display small ripples, which are likely
ue to Fabry–Perot reflections between combinations of
he lenses and horns. Since the rough extent of the
pparatus is on the order of �d�1 m, the ripples have a
requency separation [36] on the order of �f=c / �2�d�

0.15 GHz.

. RESULTS
he results for three types of arrangements (pairs,
hains, and rings) of identical spheres will be presented.
he spheres were manufactured by Countis Laboratories

California, USA), from a mixture of MgO–CaO–TiO2.
ach sphere has a radius of rs=1.07 mm, permittivity �s
112+0.1i, and unit permeability. Using Eq. (4), the
stimated magnetic dipole resonant frequency is fm
13.2 GHz, which corresponds to a free-space wave-

ength of �0=2.3 cm. Thus the host wavelength is about
en times larger than the diameter of a sphere, and the
ong-wavelength magnetic dipole assumption is valid.

For our T-matrix calculations, we use lmax=5. This is
hosen based on a measure of uniform convergence, which
e define as

�l =
1

Nf
	
i=1

Nf �Cext
l �fi� − Cext

l−1�fi�

Cext
l−1�fi�

� , �24�

here Nf frequency points are evaluated in the range
min
 f
 fmax so that each frequency is fi= fmin+ �i−1��f
nd the frequency step is �f= �fmax− fmin� / �Nf−1�. This
efinition provides a notion of convergence over the entire
andwidth of interest. The choice of l= lmax=5 guarantees
hat �l
10−3. Note that this value of lmax is significantly
maller than would be expected for the dual case of
trongly coupled plasmonic spheres. For example, for only

pair of nearly touching silver nanospheres, a value



l
v
w
d
p
p
T
w
t

A
W
s
s
m
w
m
t
b
c
t
t
a
s
a
t
c

v
r
d
t
t
r
4
s
t
T
b

b
d
t

B
W
t
r
n
e
r
t
q

c
m
s
a
w
m
b
s
g
a
i
a
r
o
d

C
T
s
i
t
d
d

F
m
t
c

1088 J. Opt. Soc. Am. B/Vol. 27, No. 5 /May 2010 Wheeler et al.
max�14 is required to ensure a similar measure of con-
ergence of �10−2 [15], but this is still a factor of 10
eaker than the case presented here. The reason for this
ifference is that metal spheres have higher-order multi-
ole resonances, as a consequence of the Drude-like dis-
ersion, which satisfy the condition �s /�0�−�l+1� / l [14].
his creates many multipole resonances within a band-
idth adjacent to the dipole resonance, which complicates

he strong coupling spectrum.

. Pair of Spheres
e consider the interaction of two spheres, with various

pacings, for two orientations. First, the spheres are
paced on the y axis, which is parallel to the incident
agnetic field. Only longitudinal modes will be excited, of
hich there are two: parallel and anti-parallel dipole mo-
ents. Since the direction of propagation is perpendicular

o the axis of the pair, the local fields at each sphere must
e equal, so only the parallel mode will couple to the in-
ident field. The results for various spacings are shown on
he left in Fig. 4. The case of a single sphere is equivalent
o two spheres with an infinite spacing. As the spheres
re brought together, the parallel-coupled resonance
hifts to lower frequencies. The resonant frequency of the
nti-parallel mode, as predicted by the theory of Subsec-
ion 2.A, is shown by the empty arrowhead, but it is un-
oupled due to the orientation of the spheres.

When the spheres are placed on the z axis, only trans-
erse modes are excited. In this case the propagation di-
ection is the same as the pair axis, so there is a phase
ifference in the incident wave at the two spheres, and
heir local fields no longer must be equal. Therefore, both
he parallel and anti-parallel modes will be excited. The
esults for various spacings are shown on the right in Fig.
. What was a single resonance for the isolated sphere
plits into two, although in contrast to the previous case,
he lower frequency resonance is the anti-parallel mode.
he coupled magnetic dipoles interact just like two hy-
ridized of atomic 2p orbitals, with bonding and anti-

-0.6

-0.3

0.0
1 sphere

-0.6

-0.3

0.0

I t/
I 0

(d
B

)

d = 3.33rs

-0.6

-0.3

0.0
d = 2.38rs

-0.6

-0.3

0.0

12 12.5 13 13.5 1

Frequency (GHz)

d = 2rs Exp.
CDM

T-matrix

ig. 4. (Color online) Transmittance through various spacings
etry axis is parallel to the incident magnetic field, and on the ri

he incident magnetic field and parallel to the direction of incide
ulated with the coupled dipole theory, and empty arrowheads in
onding resonances. The more the orbitals overlap due to
ecreasing separation, the greater the frequency separa-
ion of the resonances.

. Linear Chain of Spheres
e now consider a chain of eight touching spheres, with

he same two orientations as in the previous section. The
esults of the eigenmode analysis from the coupled mag-
etic dipole theory are shown in Fig. 5. There are eight
igenmode patterns for each polarization case, with the
esults being essentially the same for each case. The pat-
erns alternate between even and odd, and their eigenfre-
uencies are ordered oppositely for the two cases.
The transmittance results are shown in Fig. 6. In the

ase of the longitudinal modes, only four of the eight
odes are excited. This is due to the positions of the

pheres relative to the incident wave. Since the spheres
re placed in a plane of uniform phase of the incident
ave, the incident magnetic field is even, so only the even
odes are coupled. In the case of the transverse modes,

oth the odd and even modes can be excited, although
ome are so weakly coupled that they cannot be distin-
uished in the transmittance results. Since the spheres
re placed along the direction of phase propagation, the
ncident wave is a frequency-dependent mixture of even
nd odd modes. In addition, the frequency spread of the
esonances is much smaller, so the modes merge into each
ther and are not easily distinguishable as in the longitu-
inal case.

. Ring of Spheres
he normal modes of a ring of four touching spheres are
hown in Fig. 7, for the case that the incident electric field
s parallel to the ring axis x̂. There are eight modes since
here are four spheres and two components of each in-
uced magnetic dipole in the yz-plane. There are doubly
egenerate modes at 12.72 and 13.45 GHz.
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The transmittance results for two orientations of the
ing are shown in Fig. 8. The results for the two cases are
lmost the same, with two exceptions: the resonance near
2.63 GHz is uncoupled in the upper configuration, and
he resonance near 13.87 GHz is uncoupled in the lower
onfiguration. Each uncoupled mode pattern is orthogonal
o the applied excitation. This can be seen by inspecting
he mode patterns in Fig. 7 and considering the inner
roduct of Hinc at each sphere and the dipole patterns.
or example, the 12.63 GHz mode is orthogonal to the ex-
itation shown in the inset of the top panel in Fig. 8. How-
ver, this mode can couple to the excitation shown in the
econd panel in Fig. 8.

This ring of touching spheres can be considered as a ba-
is unit of a periodic metamaterial. This is a dual case of
he report on a metamaterial made with a ring of plas-
onic spheres as a basis, whose individual electric dipole

esonances form a circulating electric displacement cur-
ent and therefore, as a cluster, acts as a magnetic dipole
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ig. 6. (Color online) Transmittance through a chain of eight
ouching dielectric spheres. The top panel is for the chain axis
arallel to the incident magnetic field, and the bottom panel is
or the chain axis perpendicular to the incident magnetic field
and parallel to the propagation direction). The arrows denote
he resonant frequencies calculated with the coupled magnetic
ipole theory, and empty arrowheads indicate uncoupled modes.
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ig. 5. (Color online) The normal modes of a chain of eight
ouching spheres, calculated with the coupled magnetic dipole
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hich contributes to an effective permeability [10]. How-
ver, that report relies on plasmonic spheres with optical
esonances, which could prove to be difficult to verify ex-
erimentally. Instead, our large permittivity spheres have
ndividual magnetic dipole resonances at microwave fre-
uencies, which can be arranged and measured easily.
he lowest frequency cluster mode (Fig. 7) has a circula-
ion of magnetic displacement current, and so it acts as
n electric dipole parallel to the ring axis and should con-
ribute to an effective permittivity. We emphasize that
his electric dipole resonance is strictly a result of the cou-
ling of the magnetic dipoles among the spheres; it is not
ossible with a single sphere, where the electric dipole
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ig. 7. (Color online) The normal modes of a ring of four touch-
ng spheres. The arrows denote the induced magnetic dipole
ectors.
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ndicate uncoupled modes. The bottom two panels show the cal-
ulated effective permittivity and permeability, using the
-matrix results, of a periodic metamaterial having the ring as

he basis unit.
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esonance is at a frequency beyond the experimental
ange, at 19 GHz (Fig. 1). The doubly degenerate modes
ear 12.72 and 13.45 GHz both have a net magnetic di-
ole moment and so should contribute to an effective per-
eability. The remainder of the modes have no net dipole
oments, and although such higher-moment modes may

ontribute very slightly to the effective media values, they
o not enter the simple model of Eq. (18). Having used the
oupled magnetic dipole theory of Subsection 2.A for these
redictions, we now use the T-matrix results in Fig. 8 and
ubsection 2.C to calculate the effective media values of a
ubic lattice made with this ring as its basis, where the
ensity of the unit cells is N= �6 mm�−3. The results are
hown in the bottom two panels in Fig. 8, and they are the
ame for both ring orientations since the eigenmodes with
nonzero net magnetic moment are doubly degenerate in

he yz-plane. Although there are resonances in both the
ffective permittivity and permeability, they do not over-
ap in frequency, and it might be possible to optimize the
esign to overlap the resonances and create a negative in-
ex metamaterial.
Finally, it is interesting to compare the effective electric

olarizabilities �e,xx induced by the coupled circulation of
agnetic dipoles in the ring to that of a similar single

phere, having the same permittivity as the spheres in
he ring, but with a volume equal to the total volume of
ing spheres. Thus, the comparison sphere has a radius of
.70 mm. The result is shown in Fig. 9, where it is seen
hat the polarizabilities are comparable, and the hybrid-
zed mode does not suffer any noticeable coupling loss or
roadening. Therefore, such engineered hybridized modes
hould be useful to create designer molecular-like re-
ponses. It is stressed, however, that this comparison is
nly similar for the effective electric dipole mode of the
ing; comparisons of other quantities, such as the cross
ections, share few or no similarities.

. CONCLUSION
e have investigated the coupling of the magnetic dipole

esonances of sub-wavelength dielectric spheres with
arge permittivity. The application of a linear system of
oupled ideal magnetic dipoles allows for the prediction of
ormal mode resonant frequencies and mode patterns,
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ig. 9. (Color online) Comparison of the magnitudes of the ef-
ective electric polarizabilities of the ring, as arranged in the top
anel in Fig. 8, and a single sphere of volume equal to the four
pheres comprising the ring.
hich provide considerable physical insight into the inter-
ctions between the spheres. We have also compared the
-matrix and coupled dipole model (CDM) calculations
ith experimental transmittance results obtained with a

ocused microwave Gaussian beam setup, and the results
atch quite closely. Three types of sphere arrangements
ere studied: pairs of spheres which displayed behavior
nalogous to the bonding in hybridized atomic orbitals,
hains of spheres which are the seed toward sub-
avelength waveguides, and a ring with an unusual elec-

ric dipole response manifested by the coupling of induced
agnetic dipoles. The methods and results illustrated
ere should prove to be useful for studying near-field in-
eractions and higher-moment effects in the fields of
etamaterials and plasmonics [17,19,37,38].

PPENDIX: VECTOR SPHERICAL WAVES
he fields are expanded in the basis of vector spherical
aves, which are grouped into an array using the com-
act notation [24,39],

�T�kr� · f = �M�kr� N�kr�
 · �fM

fN�
= 	

l=1

�

	
m=−l

l

flm
M Mlm�kr� + flm

N Nlm�kr�. �A1�

he basis functions Mlm and Nlm are the irregular vector
pherical waves [23,25],

Mlm�kr� = − hl
�1��kr�Xlm�r̂�, �A2a�

Nlm�kr� =
1

kr
��l�l + 1�hl

�1��kr�Ylm�r̂� + �krhl
�1��kr�
�Zlm�r̂��,

�A2b�

here hl
�1��z� are the spherical Hankel functions. The

egular vector spherical waves, denoted by Rg Mlm and
g Nlm, use the spherical Bessel functions jl�z�, instead.
he angular dependence of the waves is the normalized
ector spherical harmonics [25],

Ylm�r̂� = �lm�l�l + 1�Pl
m�cos ��eim�r̂, �A3a�

Xlm�r̂� = �lmeim�� − im

sin �
Pl

m�cos ���̂ +
d

d�
Pl

m�cos ���̂� ,

�A3b�

Zlm�r̂� = �lmeim�� d

d�
Pl

m�cos ���̂ +
im

sin �
Pl

m�cos ���̂� ,

�A3c�

here

�lm =� �2l + 1��l − m�!

4�l�l + 1��l + m�!
, �A4�

nd Pm�x� are the associated Legendre functions.
l
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