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Dielectric spheres which are much smaller than a wavelength and made of a large permittivity can support
magnetic dipole modes of great purity. We investigate the coupling of such magnetic dipoles by studying sub-
wavelength dielectric spheres arranged in clusters as pairs, chains, and rings. The coupling among the spheres
creates hybridized modes, which may be used to engineer metamaterials with more degrees of freedom than by
using single particles. Two methods of analysis are used: an approximate coupled dipole model and an exact
transition-matrix approach. An experimental setup employs a focused Gaussian beam excitation. The magnetic
coupling presented here is similar to the coupling of plasmonic modes in metal nanoparticles. Therefore, these
experimental results are also a verification of several analogous plasmonic systems. © 2010 Optical Society of

America
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1. INTRODUCTION

There have been recent reports on magnetic metamateri-
als made of dielectric spheres. The spheres can have an
induced magnetic dipole resonance in the long-
wavelength regime if they are made from a material with
a very large permittivity, which creates induced magnetic
moments in the spheres. A large number of such spheres,
possibly as a periodic structure, would acquire a bulk
magnetization and an effective permeability. The reso-
nant frequency depends on the sphere material, which
might be ferroelectric for microwave resonances [1,2] or
dielectric with phonon-polaritonic resonances in the infra-
red [3-6]. Recent experimental results have been ob-
tained in the microwave range of a negative permeability
in a cubic arrangement of ferroelectric cubes [7], as well
as a negative index in ferroelectric rods [8]. In the infra-
red, the magnetic dipole resonance of single isolated SiC
whiskers has been observed [9], and the bulk magnetic re-
sponse of a random powder of SiC micro-particles has
been measured [6].

A greater variety and flexibility of metamaterial prop-
erties may be obtained by increasing the complexity of the
constituents beyond that of single particles. In order to do
so, in this paper we consider clusters of particles, which
allows near-field coupling within the cluster itself. The
particles comprising the clusters will remain spherical.
Artificial materials made with clusters for basis units
have been studied before, where the clusters are rings of
plasmonic spheres having a net magnetic moment [10,11],
or arrangements of many metal nanospheres or nano-
wires into lattices forming larger (but still microscopic)
spheres [12] or rods [13]. Such structures have been
dubbed meta-metamaterials [12]. However, these designs
have yet to be validated experimentally.
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In this paper we investigate analytically and experi-
mentally the effects of near-field coupling among induced
magnetic dipoles in sub-wavelength sized clusters of large
permittivity spheres. In terms of the dipolar fields exter-
nal to the spheres, this situation is an exact electromag-
netic dual of the electric dipoles induced in plasmonic
metal nanoparticles. However, since the underlying
physical mechanism is different for the two cases, several
distinguishing features can be noted. In the case pre-
sented here, the magnetic dipole modes are virtual bulk
cavity modes, whereas the modes in plasmonic particles
are supported by the electric surface charges, resulting in
a uniform internal field. More importantly, however, is
that the dispersionless large permittivity spheres used
here allow “pure” magnetic dipoles, with negligible contri-
butions by higher multipole terms, whereas plasmonic
modes—due to the dispersion of metals—have many spec-
trally adjacent multipole resonances [14] which can cause
additional complexity in the coupled interactions [15].
However, the magnetic dipole interactions studied here
remain generally analogous to plasmonic systems,
whether in terms of metamaterial properties [10-13],
plasmon chemistry [15-17], local-field enhancement
[15,18], or waveguiding [19]. Therefore, beyond the intrin-
sic interest in coupling in sub-wavelength induced mag-
netic dipole modes, the theoretical and experimental re-
sults presented here are important to the study of such
plasmonic systems.

The experimental results presented here are in the mi-
crowave domain, which simplifies the experimentation.
However, the principles of coupling of induced magnetic
dipoles in systems of dielectric particles, which are the
primary concern of this paper, scale to infrared and opti-
cal frequencies; only the specification of the dielectric
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functions of the particles would change. We stress that
magnetic dipole responses from sub-wavelength sized SiC
particles have indeed been measured in the infrared [6,9].
However, it is somewhat difficult to prepare acceptable
quality SiC micron-sized spheres and to arrange into pre-
cise clusters. To temporarily avoid these difficulties, we
present an initial verification of these principles at micro-
wave frequencies, using particles with manageable sizes
(~1 mm).

All of the cases studied here, such as pairs, short linear
chains, and rings, demonstrate the hybridization of mag-
netic dipole modes, which is analogous to atomic bonding.
While hybridization of plasmonic dipoles, or plasmon
chemistry, has been studied before [16,17], the results of
hybridized magnetic dipole coupling are novel. In particu-
lar, the case of ring clusters presented here demonstrates
that different arrangements of bonding create various ef-
fective electric or magnetic multipole modes of the cluster,
making them useful for the design of metamaterial inclu-
sions. In particular, it is shown and experimentally veri-
fied that an effective electric dipole mode is caused
strictly by hybridized magnetic dipole coupling (in a cir-
culating loop of displacement magnetic current guided by
the spheres), thereby experimentally validating an elec-
tromagnetic dual to the idea proposed in [10].

Two analytical methods are applied here. The first is an
approximate coupled dipole model (CDM), which is simi-
lar to the analysis of coupled electric dipoles in plasmonic
spheres [20,21]. Exact calculations are performed using
the transition-matrix (T-matrix) approach [22,23], which
allows for the calculation of multiple scattering by aggre-
gates of particles [24,25]. The T-matrix approach and
similar numerical techniques have been used to study the
multiple scattering of systems of particles comparable in
size to the wavelength [23,26-29], as well as in plasmonic
clusters and chains [15,18,30,31].

This paper is organized as follows. In Section 2 we out-
line the analytical model and numerical methods used to
calculate the normal modes and scattering properties of
the clusters of spheres, and we also derive the effective
media values from the results. In Section 3 we present the
design of our microwave transmission experiments using
Gaussian beam principles. The theoretical and experi-
mental results are shown in Section 4, and Section 5 con-
cludes the paper.

2. THEORY

The electromagnetic scattering of a plane wave by an iso-
lated sphere can be calculated using Mie theory [14],
which involves decomposing the scattered field into a sum
of multipole terms. The magnetic dipole portion of the re-
sponse is of prominent interest in this work. Consider an
isolated sphere of radius rg, relative permittivity ssznf,
and unit relative permeability, in a free-space host
(np=1). The units will be in SI throughout. The incident
plane wave is given by

H™(r) = Hy exp(ik™ - 1), (1)

where HI=H;y, k™=kyz2=(w/c)z is the incident
wavevector, and ¢ is the velocity of light in free space. The
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magnetic dipole portion of the field scattered by the
sphere is proportional to [14]

_ np l/’l(xs) l!fi(xh) —ng 'r//l(xh) lr,/i(xs)
() € (x) - ngéy () Y (x,)

2)

where x,=n.kgr,, x,=npkors, ¥1(z) and &(z) are Riccati—
Bessel functions, and the primes denote differentiation
with respect to the argument. Thus a magnetic dipole mo-
ment m is induced, and the magnetic polarizability a, of
the sphere, defined by m=«,, Hi', is [4]

67
Q= k—gbl. 3)
For most common materials, the magnetic dipole re-
sponse b; of a sub-wavelength sphere (\¢/2r,=10) is usu-
ally 1 order of magnitude smaller than its electric dipole
response. There is, however, a situation where a non-
magnetic sphere can have a dominant long-wavelength
magnetic response [3-5]. Equating the denominator of
Eq. (2) to zero and using the long-wavelength condition
x5, <1, the resonant frequency f,, of the magnetic dipole
resonance is [4]

[ =cl2ngr,. (4)

For sub-wavelength spheres this resonant condition can
only be satisfied if the spheres are made of a large permit-
tivity, £,=100. In this paper we will consider spheres
made of a mixture of oxides, with permittivity ¢,=112
+0.1:. For this case, the dominance of the magnetic dipole
scattering over the electric dipole and the quadrupole
terms can be seen in Fig. 1. Thus such a sphere to a good
approximation acts as a magnetic dipole, for the fre-
quency range roughly between 11 and 15 GHz.

A. Coupled Ideal Magnetic Dipoles

When two or more spheres are closely spaced, they may
interact strongly. Since our sub-wavelength dielectric
spheres approximate ideal electrodynamic magnetic di-

Magnitude (No Units)
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Frequency (GHz)

Fig. 1. Magnitudes of the Mie scattering coefficients of a dielec-
tric sphere, having radius r,=1.07 mm, permittivity &,=112
+0.17, and unit permeability. The curves are a; electric dipole, b,
magnetic dipole, a, electric quadrupole, and b, magnetic quadru-
pole. The magnetic dipole is dominant throughout the range of
frequencies used in the experimental results, 11-15 GHz.
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poles, a cluster of such spheres can be modeled by a sys-
tem of linear equations. We will use the equations to es-
timate the resonant frequencies, normal modes, and
extinction cross sections.

The magnetic field radiated by a magnetic dipole is [32]

eikO’{kS_ _<1 ikoﬂ
H(r)=——| —(@-#8)+ (38¢-T) —)|'m

B i
=G(r) -m, (5)

where G(r) is the Green’s dyadic and I is the identity dy-
adic. The coordinate origin is the site of m. For a system
of N, spheres, located at x; (1=j=N,), the local field at
particle j is

N,

H(x,) = H"(x;) + >, Hj(x; - Xp), (6)
k#j

where H,(r)=G(r)-m, is the magnetic field due to the
moment m,, of particle 2. The local field at sphere j in-
duces a moment mj=amHl°°(xj), where ¢, is given ap-
proximately by Eq. (3). For a cluster of identical spheres
Eq. (6) becomes

1 Ns _ ,
—m; - E G(x;-x;) - my, = H™(x)). (7)
A, k#j

These are the master equations for the CDM.

To estimate the resonant frequencies and to evaluate
the normal mode patterns, the incident field can be re-
moved by setting the right-hand side of Eq. (7) to zero. As
an example, this situation will be evaluated for a linear
chain. Since the incident magnetic field is y-polarized,
my,=m,;y. Then the coefficients of m;, in the homogeneous
equivalent to Eq. (7) form the elements of a matrix A,

1Vay,, j=k

Ay = — A . (8)
P9 Glxmxy -y, JFE

This matrix is frequency dependent, so a straightforward
way to find the resonant modes is to sweep the frequency,
each time of diagonalizing the matrix. The eigenvectors
are hybridized modes, which represent the cluster as a
whole, with no external couplings. The eigenvalues \ are
frequency dependent, and frequencies that best satisfy
the condition of singularity A=0 are resonant frequencies.
The corresponding configuration of the magnetic dipole
vectors induced in each sphere is given by the associated
eigenvector.

We will also present results for a ring of four identical
spheres. In this case there are two components to the
magnetic dipole moment of each sphere, so Eq. (7) is com-
prised of eight equations, and a matrix similar to Eq. (8)
can be constructed.

The extinction cross section can be calculated from the
optical extinction theorem [23,33]. To do so, we require
the vector scattering amplitude,
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where m; are the solutions of the forced coupled system
(7), and H5 is the total scattered magnetic field in the
far-field approximation. Then the extinction cross section
is

4

Copp=———
7 ko[ HP

Im{F (k™) - Hi"}. (10)

B. Numerical Solution Using the Transition-Matrix
Approach
In contrast to the approximate coupled dipole mode, the
T-matrix approach is exact in principle; the only limita-
tion is set by the upper limit on the number of multipoles
for practical implementation. This method improves upon
the coupled dipole method of the previous section because
all multipole terms can be included. In this paper the
dominance of the magnetic dipole modes (Fig. 1) over all
other higher-order multipoles means that this improve-
ment will only be apparent for very closely spaced
spheres. The T-matrix approach is generally flexible
enough to handle clusters of particles with arbitrary ge-
ometry, material composition, and particle shape.

In this approach, all of the fields are expanded in the
basis of vector spherical waves about the origin. An inci-
dent electric field with amplitude E, is expanded as

E™(r)=Ey Rg W(kor) - a, (11)
and a scattered field is expanded as
Es4(r) = EgW7 (kor) - f, (12)

where the superscript 7' denotes vector transposition. The
column vectors a and f contain the expansion coefficients,
and the arrays Rg W(kor) and W(kor) contain the vector
spherical wave basis functions, as elaborated in the
Appendix. These basis functions are analogous to atomic
orbitals, such that the multipole order /[=1,2,3,... corre-
sponds to the orbital quantum number and -/ =m =/ cor-
responds to the magnetic quantum number. For numeri-
cal calculations the expansions are truncated at [=[,,,, so
that the vectors a and f, which are henceforth all that
are needed to represent the fields, each have L.,
=2l pax(lmax+2) components.

Although the incident field can be arbitrary, we con-
sider only the plane wave (1), whose corresponding elec-
tric field has a vector of expansion coefficients a with the
following components:

all = 72+ 1) (81 + 1),

apy, =i NT21+ 1)(8, 01— 8 1), (13)

where &, is the Kronecker delta.

The scattering properties of an isolated single particle
are completely specified by its one-body matrix T;, where
the subscript indicates that there is only a single particle
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in the problem. This matrix operates on the incident field
vector to produce the scattered field,

f=T, a. (14)

The elements of T; can be calculated by knowing the size
and shape of the particle, as well as the permittivity and
permeability of the particle and host [23]. We will only
consider spherical particles, for which the matrix is diag-
onal, such that A2 =—b,a¥ and £ =—a;al) , where a; and
b; are the Mie coefficients [14], which describe the ampli-
tudes of electric and magnetic /-multipole scattering, re-
spectively.

Now consider a cluster of N, particles, located at x;
(1=j=N,) as shown in Fig. 2. The scattering by each
sphere in isolation is described by T(lj). The cluster can be
modeled by a matrix T, such that the total scattered
field is

f=Tclust' a, (15)
where
NS
Tause= X, IO TEH - J*0. (16)
jk=1

JUR=J(kox;-kox;) are regular vector translation matri-
ces, which translate the regular vector spherical waves
centered at x; from those at x;, [25]. TX,’:“) are scatterer-
centered T' matrices, which may be calculated from TY')
and x; for each of the N, particles using an efficient and
numerically stable recursive algorithm [25].

The extinction cross section C,,; may be calculated with
[25]

-1 _
Ceys = _QRe{aT “Tegust * a}
Ry

N,

s

— >, Relexplikyz- (x;,-x)]a"- T
kOJk 1

(Jk) al,

17

where Tis the Hermitian adjoint operator. The second of
these expressions is a simplification which is only valid
for the particular incident plane wave corresponding to
Eq. (1), where the propagation direction is z, the electric

Fig. 2. (Color online) A cluster of N, particles, bounded by a
dashed sphere. Particle j, in isolation, is modeled by T?, and af-
ter calculating the multiple scattering solution the cluster within
the dashed boundary is modeled by T, The incident wave is
represented by a, and f is the total scattered field.

Wheeler et al.

field is xX-polarized, and the expansion coefficients a are
as in Eq. (13).

C. Metamaterials with a Cluster Basis

In addition to calculating the scattering of small clusters,
we also consider their use as the basis units in a periodic
metamaterial. Not only should the spheres be much
smaller than a wavelength for this concept to be useful,
but so should the cluster itself. The N, particle cluster, en-
closed by a spherical boundary, is shown in Fig. 2. If the
cluster has electric and magnetic polarlzablhtles @ and
gy b then the effective permittivity e xx and permeabil-
ity ,ur yy of a periodic composite can be found using the
Clausius—Mossotti relations,

ef -1 N| 1 E3\ |
eff— =— +i| — 5 (183)
e t2 3| X 6
w -1 N[ 1 LAY
o =— +i| — , (18b)
ey +2 3| iy, 6

where the cluster density is N. The second term in the
square brackets, which is not often included in the
Clausius—Mossotti relations, cancels the scattering losses
included within the polarizability of the first term. In-
deed, a periodic metamaterial in the long-wavelength
limit should have no scattering losses [34].

The polarizabilities required in Eqs. (18) are propor-
tional to the scattered dipole fields f;,,. For example, the
magnetic dipole portion of the scattered electric field is
transverse to ¢ (TE”), making it the }dlmelm(kor) terms of
Eq. (12). This portion of the scattered field can be equated
to that from an ideal magnetic dipole [32],

sca ﬂokg PN (1)
dipole = ?(I‘ X m)hl (kor), (19)

where 7= \s“so/ Mo- The comparison yields

m= [(filwl laM1)X i(fy 1+1M1)Y+V2/Moz]

0k3
(20)
Since we are considering only the plane wave defined by

Eq. (1), the incident magnetic field has only a § compo-
nent, so the magnetic polarizability «, ,, is

I e
l\r’3’7T

=——A +AN. (21)

ko

my
Cmyy = H
y

H =H,=0

The dual case of the comparison between the TM" scat-
tered electric dipole field and an ideal electric dipole
source yields

1'3’7T
=—( -~ (22)

Dx
Q,
3
kg
E,=E,=0

exx =
&ok,

These expressions can be verified for the trivial case of
a single spherical particle. Then the polarizabilities are
scalars, so a,=a, ,, and @, =ay,, ,,, and the results match
Eq. (3) and the equivalent expression for «,.
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3. EXPERIMENTAL SETUP

A. Gaussian Beam Design

In the theory we have assumed that the clusters are ex-
cited by a plane wave. This can be approximated experi-
mentally at microwave frequencies (12-18 GHz) with a
pyramidal horn source and a dielectric lens for focusing,
as shown in Fig. 3, and a mirror image of the system cap-
tures the transmitted signal. The Rexolite biconvex lens
is approximately d;=7.5 cm thick along its axis and has a
refractive index of n;,=1.59. The surface facing the horn
has a focal length of f;=18.68 cm corresponding to a ra-
dius of R;=11 cm, and the surface facing the sample has a
focal length of f5,=29.00 cm corresponding to a radius of
Ry=-17.1 cm.

The shape of a pyramidal horn has been shown to be
sufficient to map it into Gaussian optics [35]. The horn
aperture dimensions are wy=4.29 cm in the H-plane and
wg=3.30 cm in the E-plane, which provide an approxi-
mate average beam width at the aperture, w,=(0.35wg
+0.5wg)/2. The pyramidal slant lengths in each plane are
Syr=10.13 cm and S;=8.36 cm, which result in an ap-
proximate average wavefront radius R,=(Sy+Sg)/2 in
the aperture plane.

The beam needs to be focused to a waist where the
samples are placed. To approximate a plane wave, there
are two requirements. First, to ensure that the field am-
plitude is uniform over the samples, the beam waist at
the sample w, ; must be much larger than the transverse
extent of the samples. Second, to ensure that the wave-
fronts are planar, the Rayleigh range z, ; must be much
larger than the longitudinal extent of the samples. In our
design we have chosen the distance from the horn aper-
ture to the front of the lens to be d;=15 cm, and simple
Gaussian beam principles [36] yield the spacing between
the back of the lens and the sample to be dy=30 cm, the
beam waist at the sample plane to be w=2.7 cm, and
the Rayleigh range at the sample to be z( ;=11.7 cm. The
latter two dimensions are indeed much larger than the
samples, ensuring a plane wave excitation.

B. Transmission Measurements

A sample placed at the focused beam waist will scatter
power in all directions, the total of which is removed from
the incident wave. By the optical theorem, the total of
scattering and absorption (which is nearly absent in our
samples) is proportional to the extinction cross section
Cext- Therefore, the normalized transmittance through

d, ‘ dy,

dy

Fig. 3. Schematic of the microwave horn and dielectric lens
used to focus a Gaussian beam over a sample sphere. The setup
is completed by the mirror image to receive the signal. Some of
the curved wavefronts are shown with dashed lines; notice that
there is a beam waist within the horn, not at its aperture.
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the system T, is the ratio of the intensity measured
with the sample in place, I;, to that with no sample, I,
which is approximately

T _ It ~1 Cext (23)
cale = Io Ab ’

where Ab=7rw%’s/ 0.86 is the transverse area of the beam
at the sample plane and w s is the beam waist. The factor
of 1/0.86 is due to the definition of the beam width as the
1/e distance, so only 86% of the power in the beam is con-
tained within the cylinder defined by the waist.

A sample holder was made from polystyrene foam,
which is essentially transparent to microwaves. The
horns were connected to an HP 8722C vector network
analyzer, allowing for the measurement of the transmis-
sion magnitude |Sy;|. The system was calibrated by first
saving a measurement of the transmitted powder density
I,%|S41|? without a sample in place. Then a sample was
inserted and another measurement was taken I,%|Sy|2.
The ratio of these measurements yields the normalized
transmittance Tpeqs=I7/1), which may be compared with
Eq. (23). This process removes the effects of the horns,
lenses, and sample holder. Furthermore, 0.2% smoothing
and 16 sample averages were used to minimize the noise
in these sensitive measurements. The resulting measure-
ments continue to display small ripples, which are likely
due to Fabry—Perot reflections between combinations of
the lenses and horns. Since the rough extent of the
apparatus is on the order of Ad ~1 m, the ripples have a
frequency separation [36] on the order of Af=c/(2Ad)
~0.15 GHz.

4. RESULTS

The results for three types of arrangements (pairs,
chains, and rings) of identical spheres will be presented.
The spheres were manufactured by Countis Laboratories
(California, USA), from a mixture of MgO-CaO-TiO,.
Each sphere has a radius of r;,=1.07 mm, permittivity &,
=112+0.1i, and unit permeability. Using Eq. (4), the
estimated magnetic dipole resonant frequency is f,
~13.2 GHz, which corresponds to a free-space wave-
length of \g=2.3 cm. Thus the host wavelength is about
ten times larger than the diameter of a sphere, and the
long-wavelength magnetic dipole assumption is valid.

For our T-matrix calculations, we use [,,,,=5. This is
chosen based on a measure of uniform convergence, which
we define as

1 20| Coulf) = Coa ()

CLA(f)

where N, frequency points are evaluated in the range
fmin=f=fmax S0 that each frequency is f;=fnin+(@—-1)Af
and the frequency step is Af=(fmax—/min)/™Vy—1). This
definition provides a notion of convergence over the entire
bandwidth of interest. The choice of [=1,,,,=5 guarantees
that A;=1073. Note that this value of /., is significantly
smaller than would be expected for the dual case of
strongly coupled plasmonic spheres. For example, for only
a pair of nearly touching silver nanospheres, a value

, (24)
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lmax>14 is required to ensure a similar measure of con-
vergence of ~1072 [15], but this is still a factor of 10
weaker than the case presented here. The reason for this
difference is that metal spheres have higher-order multi-
pole resonances, as a consequence of the Drude-like dis-
persion, which satisfy the condition e,/eq~—(l+1)/1 [14].
This creates many multipole resonances within a band-
width adjacent to the dipole resonance, which complicates
the strong coupling spectrum.

A. Pair of Spheres

We consider the interaction of two spheres, with various
spacings, for two orientations. First, the spheres are
spaced on the y axis, which is parallel to the incident
magnetic field. Only longitudinal modes will be excited, of
which there are two: parallel and anti-parallel dipole mo-
ments. Since the direction of propagation is perpendicular
to the axis of the pair, the local fields at each sphere must
be equal, so only the parallel mode will couple to the in-
cident field. The results for various spacings are shown on
the left in Fig. 4. The case of a single sphere is equivalent
to two spheres with an infinite spacing. As the spheres
are brought together, the parallel-coupled resonance
shifts to lower frequencies. The resonant frequency of the
anti-parallel mode, as predicted by the theory of Subsec-
tion 2.A, is shown by the empty arrowhead, but it is un-
coupled due to the orientation of the spheres.

When the spheres are placed on the z axis, only trans-
verse modes are excited. In this case the propagation di-
rection is the same as the pair axis, so there is a phase
difference in the incident wave at the two spheres, and
their local fields no longer must be equal. Therefore, both
the parallel and anti-parallel modes will be excited. The
results for various spacings are shown on the right in Fig.
4. What was a single resonance for the isolated sphere
splits into two, although in contrast to the previous case,
the lower frequency resonance is the anti-parallel mode.
The coupled magnetic dipoles interact just like two hy-
bridized of atomic 2p orbitals, with bonding and anti-

0.0 i A *
1 sphere I
03} P /

I/l (dB)

Exp.
T-matrix -------

-0.6 | . .
12 12.5 13 13.5 14
Frequency (GHz)

Fig. 4.
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bonding resonances. The more the orbitals overlap due to
decreasing separation, the greater the frequency separa-
tion of the resonances.

B. Linear Chain of Spheres

We now consider a chain of eight touching spheres, with
the same two orientations as in the previous section. The
results of the eigenmode analysis from the coupled mag-
netic dipole theory are shown in Fig. 5. There are eight
eigenmode patterns for each polarization case, with the
results being essentially the same for each case. The pat-
terns alternate between even and odd, and their eigenfre-
quencies are ordered oppositely for the two cases.

The transmittance results are shown in Fig. 6. In the
case of the longitudinal modes, only four of the eight
modes are excited. This is due to the positions of the
spheres relative to the incident wave. Since the spheres
are placed in a plane of uniform phase of the incident
wave, the incident magnetic field is even, so only the even
modes are coupled. In the case of the transverse modes,
both the odd and even modes can be excited, although
some are so weakly coupled that they cannot be distin-
guished in the transmittance results. Since the spheres
are placed along the direction of phase propagation, the
incident wave is a frequency-dependent mixture of even
and odd modes. In addition, the frequency spread of the
resonances is much smaller, so the modes merge into each
other and are not easily distinguishable as in the longitu-
dinal case.

C. Ring of Spheres

The normal modes of a ring of four touching spheres are
shown in Fig. 7, for the case that the incident electric field
is parallel to the ring axis x. There are eight modes since
there are four spheres and two components of each in-
duced magnetic dipole in the yz-plane. There are doubly
degenerate modes at 12.72 and 13.45 GHz.

0.0 A * - e
1 sphere 4
03} ° \
0.6 [ 1 1 1 1 1 1 1 )

0.0
-0.3
-0.6

0.0

-0.3
-0.6

0.0
-0.3

-0.6
124 126 128 13 132 134 136 138 14
Frequency (GHz)

(Color online) Transmittance through various spacings of paired spheres. On the left are longitudinal modes, where the sym-

metry axis is parallel to the incident magnetic field, and on the right are transverse modes, where the symmetry axis is perpendicular to
the incident magnetic field and parallel to the direction of incident field propagation. The arrows denote the resonant frequencies cal-
culated with the coupled dipole theory, and empty arrowheads indicate uncoupled modes.



Wheeler et al.

Frequency (GHz)
L T

m 12.08 | 13.64
(mm 12.35 | 13.42
CIDSXDQXBCKD12D 13.30
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Fig. 5. (Color online) The normal modes of a chain of eight
touching spheres, calculated with the coupled magnetic dipole
model. The mode frequencies are shown for the longitudinal (L)
and transverse (T) polarizations.

Magnetic Dipole Moment Eigenmodes (Real Part)

The transmittance results for two orientations of the
ring are shown in Fig. 8. The results for the two cases are
almost the same, with two exceptions: the resonance near
12.63 GHz is uncoupled in the upper configuration, and
the resonance near 13.87 GHz is uncoupled in the lower
configuration. Each uncoupled mode pattern is orthogonal
to the applied excitation. This can be seen by inspecting
the mode patterns in Fig. 7 and considering the inner
product of Hi™® at each sphere and the dipole patterns.
For example, the 12.63 GHz mode is orthogonal to the ex-
citation shown in the inset of the top panel in Fig. 8. How-
ever, this mode can couple to the excitation shown in the
second panel in Fig. 8.

This ring of touching spheres can be considered as a ba-
sis unit of a periodic metamaterial. This is a dual case of
the report on a metamaterial made with a ring of plas-
monic spheres as a basis, whose individual electric dipole
resonances form a circulating electric displacement cur-
rent and therefore, as a cluster, acts as a magnetic dipole

I/lo (dB)

0.0

1.0 |

-2.0 | T-maltrix R

1 1 1 J
11.5 12 12.5 13 13.5 14 14.5
Frequency (GHz)

Fig. 6. (Color online) Transmittance through a chain of eight
touching dielectric spheres. The top panel is for the chain axis
parallel to the incident magnetic field, and the bottom panel is
for the chain axis perpendicular to the incident magnetic field
(and parallel to the propagation direction). The arrows denote
the resonant frequencies calculated with the coupled magnetic
dipole theory, and empty arrowheads indicate uncoupled modes.
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12.38 GHz 12.63 GHz 12.72 GHz 12.72 GHz

Y W) (A
WD D S DS

13.45 GHz 13.45 GHz 13.87 GHz 14.21 GHz

Fig. 7. (Color online) The normal modes of a ring of four touch-
ing spheres. The arrows denote the induced magnetic dipole
vectors.

which contributes to an effective permeability [10]. How-
ever, that report relies on plasmonic spheres with optical
resonances, which could prove to be difficult to verify ex-
perimentally. Instead, our large permittivity spheres have
individual magnetic dipole resonances at microwave fre-
quencies, which can be arranged and measured easily.
The lowest frequency cluster mode (Fig. 7) has a circula-
tion of magnetic displacement current, and so it acts as
an electric dipole parallel to the ring axis and should con-
tribute to an effective permittivity. We emphasize that
this electric dipole resonance is strictly a result of the cou-
pling of the magnetic dipoles among the spheres; it is not
possible with a single sphere, where the electric dipole

I/l (dB)

-0.6 & 1 1 1" 1 1 T-mlatrlx “| ----- )
10
Real ——
N 5L Imag -------
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0 becccscccncccascnnnfocccccnccccncncnccccnccsmcccnscscancnans
5 1 1 1 1 1 1 1 J
80 .
\ Real ——
40 Imag -------
5 0
=
-40
'80 1 1 1 1 1 1 1 J
11 11.5 12 125 13 135 14 145 15

Frequency (GHz)

Fig. 8. (Color online) The top two panels show the transmit-
tance through a ring of touching dielectric spheres, for two ori-
entations. The arrows denote the resonant frequencies calculated
with the coupled magnetic dipole theory, and empty arrowheads
indicate uncoupled modes. The bottom two panels show the cal-
culated effective permittivity and permeability, using the
T-matrix results, of a periodic metamaterial having the ring as
the basis unit.
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resonance is at a frequency beyond the experimental
range, at 19 GHz (Fig. 1). The doubly degenerate modes
near 12.72 and 13.45 GHz both have a net magnetic di-
pole moment and so should contribute to an effective per-
meability. The remainder of the modes have no net dipole
moments, and although such higher-moment modes may
contribute very slightly to the effective media values, they
do not enter the simple model of Eq. (18). Having used the
coupled magnetic dipole theory of Subsection 2.A for these
predictions, we now use the T-matrix results in Fig. 8 and
Subsection 2.C to calculate the effective media values of a
cubic lattice made with this ring as its basis, where the
density of the unit cells is N=(6 mm)~3. The results are
shown in the bottom two panels in Fig. 8, and they are the
same for both ring orientations since the eigenmodes with
a nonzero net magnetic moment are doubly degenerate in
the yz-plane. Although there are resonances in both the
effective permittivity and permeability, they do not over-
lap in frequency, and it might be possible to optimize the
design to overlap the resonances and create a negative in-
dex metamaterial.

Finally, it is interesting to compare the effective electric
polarizabilities «, ,, induced by the coupled circulation of
magnetic dipoles in the ring to that of a similar single
sphere, having the same permittivity as the spheres in
the ring, but with a volume equal to the total volume of
ring spheres. Thus, the comparison sphere has a radius of
1.70 mm. The result is shown in Fig. 9, where it is seen
that the polarizabilities are comparable, and the hybrid-
ized mode does not suffer any noticeable coupling loss or
broadening. Therefore, such engineered hybridized modes
should be useful to create designer molecular-like re-
sponses. It is stressed, however, that this comparison is
only similar for the effective electric dipole mode of the
ring; comparisons of other quantities, such as the cross
sections, share few or no similarities.

5. CONCLUSION

We have investigated the coupling of the magnetic dipole
resonances of sub-wavelength dielectric spheres with
large permittivity. The application of a linear system of
coupled ideal magnetic dipoles allows for the prediction of
normal mode resonant frequencies and mode patterns,

8 T
Ring
7r Sphere, Equiv. Vol. — — - 4
6 h ]
h
1\9 5 'll .
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0 \I/’ ——_—I_ 1 1 1

11 11.5 12 12.5 13 13.5 14 14.5 15
Frequency (GHz)
Fig. 9. (Color online) Comparison of the magnitudes of the ef-
fective electric polarizabilities of the ring, as arranged in the top
panel in Fig. 8, and a single sphere of volume equal to the four
spheres comprising the ring.
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which provide considerable physical insight into the inter-
actions between the spheres. We have also compared the
T-matrix and coupled dipole model (CDM) calculations
with experimental transmittance results obtained with a
focused microwave Gaussian beam setup, and the results
match quite closely. Three types of sphere arrangements
were studied: pairs of spheres which displayed behavior
analogous to the bonding in hybridized atomic orbitals,
chains of spheres which are the seed toward sub-
wavelength waveguides, and a ring with an unusual elec-
tric dipole response manifested by the coupling of induced
magnetic dipoles. The methods and results illustrated
here should prove to be useful for studying near-field in-
teractions and higher-moment effects in the fields of
metamaterials and plasmonics [17,19,37,38].

APPENDIX: VECTOR SPHERICAL WAVES

The fields are expanded in the basis of vector spherical
waves, which are grouped into an array using the com-
pact notation [24,39],

Wl (kr) - f= [M(kr) N(kr)] . {fM}
ol

l

> AEM,,, (kr) + 20Ny, (kr). (A1)

©
I=1 m=-1

The basis functions M;,, and Nj,, are the irregular vector
spherical waves [23,25],
M, (kx) = = b (kr) X (8), (A2a)

1
Ny () = {0+ DAV (EP)Y () + [erh( (k)] Z,, (8)},
(A2Db)

where h}l)(z) are the spherical Hankel functions. The
regular vector spherical waves, denoted by Rg M;,, and
Rg N;,,,, use the spherical Bessel functions j;(z), instead.
The angular dependence of the waves is the normalized
vector spherical harmonics [25],

Y, (#) = v, Il + 1)P}*(cos 0)e™ ¢, (A3a)
[—im . d N
X;,,(#) = ye™?| ——P}*(cos )0+ —PJ*(cos 0)¢ |,
| sin 0 de |
(A3Db)
) d . im . 1
Z,,,(¥) = yjme™?| —Pj"(cos 6)0+——P]'(cos 0) |,
i deo sin 6 ]
(A3c)
where
2L+ 1) -m)!
Yim = (A4)

d4al(l+ 1)1 +m)!’

and Pj'(x) are the associated Legendre functions.



Wheeler et al.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and
magnetic activity in dielectric composites,” J. Phys. Con-
dens. Matter 14, 4035-4044 (2002).

0. G. Vendik and M. S. Gashinova, “Artificial double nega-
tive (DNG) media composed by two different dielectric
sphere lattices embedded in a dielectric matrix,” in Proceed-
ings of the 34th European Microwave Conference (IEEE,
2004), Vol. 3, pp. 1209-1212.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-
dimensional array of dielectric spheres with an isotropic
negative permeability at infrared frequencies,” Phys. Rev. B
72, 193103 (2005).

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated
non-magnetic spheres with a negative index of refraction at
infrared frequencies,” Phys. Rev. B 73, 045105 (2006).

V. Yannopapas and A. Moroz, “Negative refractive index
metamaterials from inherently non-magnetic materials for
deep infrared to terahertz frequency ranges,” J. Phys. Con-
dens. Matter 17, 3717-3734 (2005).

M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and
M. Mojahedi, “Infrared magnetic response in a random sili-
con carbide micropowder,” Phys. Rev. B 79, 073103 (2009).
Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J.
Zhou, and L. Li, “Experimental demonstration of isotropic
negative permeability in a three-dimensional dielectric
composite,” Phys. Rev. Lett. 101, 027402 (2008).

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M.
Grzegorczyk, “Experimental observation of left-handed be-
havior in an array of standard dielectric resonators,” Phys.
Rev. Lett. 98, 157403 (2007).

dJ. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma,
“Dielectric metamaterials based on electric and magnetic
resonances of silicon carbide particles,” Phys. Rev. Lett. 99,
107401 (2007).

A. Alu, A. Salandrino, and N. Engheta, “Negative effective
permeability and left-handed materials at optical frequen-
cies,” Opt. Express 14, 1557-1567 (2006).

A. Alu and N. Engheta, “Dynamical theory of artificial op-
tical magnetism produced by rings of plasmonic nanopar-
ticles,” Phys. Rev. B 78, 085112 (2008).

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T.
Scharf, “Design of an artificial three-dimensional composite
metamaterial with magnetic resonances in the visible
range of the electromagnetic spectrum,” Phys. Rev. Lett. 99,
017401 (2007).

W. Park and Q. Wu, “Negative effective permeability in
metal cluster photonic crystal,” Solid State Commun. 146,
221-227 (2008).

C. F. Bohren and D. R. Huffman, Absorption and Scattering
of Light by Small Particles (Wiley, 1983).

R.-L. Chern, X.-X. Liu, and C.-C. Chang, “Particle plasmons
of metal nanospheres: application of multiple scattering ap-
proach,” Phys. Rev. E 76, 016609 (2007).

S. Riikonen, I. Romero, and F. J. Garcia de Abajo, “Plasmon
tunability in metallodielectric metamaterials,” Phys. Rev. B
71, 235104 (2005).

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing
to waveguiding,” Nat. Photonics 1, 641-648 (2007).

W.-Y. Chien and T. Szkopek, “Multiple-multipole simulation

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Vol. 27, No. 5/May 2010/dJ. Opt. Soc. Am. B 1091

of optical nearfields in discrete metal nanosphere assem-
blies,” Opt. Express 16, 1820-1835 (2008).

S. A. Maier and H. A. Atwater, “Plasmonics: localization
and guiding of electromagnetic energy in metal/dielectric
structures,” J. Appl. Phys. 98, 011101 (2005).

W. H. Weber and G. W. Ford, “Propagation of optical excita-
tions by dipolar interactions in metal nanoparticle chains,”
Phys. Rev. B 70, 125429 (2004).

K. H. Fung and C. T. Chan, “Analytical study of the plas-
monic modes of a metal nanoparticle circular array,” Phys.
Rev. B 77, 205423 (2008).

P. C. Waterman, “Symmetry, unitarity, and geometry in
electromagnetic scattering,” Phys. Rev. D 3, 825-839
(1971).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering,
Absorption, and Emission of Light by Small Particles (Cam-
bridge U. Press, 2002).

W. C. Chew, Waves and Fields in Inhomogeneous Media
(IEEE, 1995).

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix ap-
proach to local field calculations in multiple-scattering
problems,” J. Mod. Opt. 49, 2129-2152 (2002).

J. Bruning and Y. Lo, “Multiple scattering of EM waves by
spheres part I—Multipole expansion and ray-optical solu-
tions,” IEEE Trans. Antennas Propag. 19, 378-390 (1971).
J. Bruning and Y. Lo, “Multiple scattering of EM waves by
spheres part II—Numerical and experimental results,”
IEEE Trans. Antennas Propag. 19, 391-400 (1971).

D. W. Mackowski and M. I. Mishchenko, “Calculation of the
T matrix and the scattering matrix for ensembles of
spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).

F. J. Garcia de Abajo, “Multiple scattering of radiation in
clusters of dielectrics,” Phys. Rev. B 60, 6086—6102 (1999).
M. Quinten and U. Kreibig, “Absorption and elastic scatter-
ing of light by particle aggregates,” Appl. Opt. 32, 6173—
6182 (1993).

B. Stout, J.-C. Auger, and A. Devilez, “Recursive T' matrix
algorithm for resonant multiple scattering: applications to
localized plasmon excitations,” J. Opt. Soc. Am. A 25, 2549—
2557 (2008).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
1999).

V. A. Markel, “Antisymmetrical optical states,” J. Opt. Soc.
Am. B 12, 1783-1791 (1995).

S. Tretyakov, Analytical Modeling in Applied Electromag-
netics (Artech House, 2003).

P. F. Goldsmith, Quasioptical Systems: Gaussian Beam
Quasioptical Propagation and Applications (IEEE, 1998).
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics
(Wiley, 1991).

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Pen-
ninkhof, and A. Polman, “Highly confined electromagnetic
fields in arrays of strongly coupled Ag nanoparticles,” Phys.
Rev. B 71, 235408 (2005).

A. F. Koenderink and A. Polman, “Complex response and
polariton-like dispersion splitting in periodic metal nano-
particle chains,” Phys. Rev. B 74, 033402 (2006).

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electro-
magnetic Waves: Theories and Applications (Wiley-
Interscience, 2000).



