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This final progress report summarizes the main accomplishments of this program.
In particular, we detail the accomplishments during the final funding period, i.e., since
the submission of the last interim progress report. The two areas that we focused on in
this period were i) the integration of a microstrip patch antenna with a two-dimensional
photonic crystal substrate, and ii) the time and frequency domain detection of
superluminal group wvelocity in one-dimensional photonic crystals. For the two-
dimensional photonic crystal substrate work, we studied the effects of a finite-sized
ground plane on the resonance frequency of a microstrip patch antenna. A finite-
difference-time-domain (FDTD) code was used for these studies, and the calculations
were found to be in good agreement with the experimental characterizations. The effect
of a defect state under the antenna location was also studied and found to improve the
performance. For the one-dimensional photonic crystal characterization studies, a
transfer matrix technique was used to obtain analytical closed form expressions for both
the transmission and reflection coefficients of a plane wave incident onto it. We were
able to experimentally measure superluminal group velocities for propagation through
the "stop-band" of a one-dimensional photonic crystal. This result is not inconsistent
with special relativity or causality since the frontal (forerunner) velocity of the signal
never exceeds the speed of light in vacuum. These results are important for a
fundamental understanding of electromagnetic wave propagation through short
interaction regions with anomalous dispersion.
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1. Problem Statement

Photonic crystals have been studied for a number of years, primarily with
applications in the optical regime. Photonic crystals can also play a beneficial role in the
microwave band, particularly when wide bandwidth is a consideration. Photonic crystals
offer the possibility of improving antenna directivity and efficiency with minimal losses.
The purpose of this grant was to research and develop photonic crystal flat panel radiators
for wideband high power antennas. These antennas are of great interest to the U.S. Army
for use in communication systems, as well as in electromagnetic susceptibility studies.
The research performed under the auspices of this grant studied these issues, as well as
some fundamental questions regarding the nature of electromagnetic wave propagation
and superluminal group velocities. The placement of an antenna on a defect state in a
photonic crystal was found to enhance its radiation characteristics.



2. Summary of Recent Results

1. Integration of a Microstrip Patch Antenna with a Two-Dimensional Photonic
Crystal Substrate

Introduction

Photonic crystals are a class of periodic metallic, dielectric, or composite structures
that exhibit transmission (pass) and reflection (stop) bands in their frequency response
[1,2]. These bands occur due to the constructive and destructive interference of the
electromagnetic waves. For example, the stop band in a three-dimensional infinite crystal
is referred to as a “forbidden™ gap since the waves in a/l directions destructively interfere
and are thus evanescent. The photonic crystals used in this work were fabricated by
drilling holes in a dielectric host using standard machining techniques [1]. If the
periodicity in a photonic crystal is perturbed (by either removing or adding a material
with a different dielectric constant), creating a “defect,” a state is created in the forbidden
gap where an electromagnetic mode is allowed and localization of the energy occurs [1].

Photonic crystals are currently being introduced in many novel microwave
applications. For example, they have been used as filters in microstrip lines [3], as high-
power microwave components [4], and as substrates for printed antenna structures [5-8].
Theoretical descriptions of photonic crystals thus far have been limited to determining the
dispersion curve in an infinitely periodic structure [9]. However, many of the
applications listed above require the determination of the characteristics of a photonic
crystal of finite size or with a finite ground plane. One effective approach to studying
finite-sized crystals, as well as antenna applications of photonic crystals has been the
finite-difference time-domain (FDTD) technique [10,11]. This technique was
implemented in this work.

Microstrip patch antennas are, on the other hand, well understood and have found
applications in communication systems, as well as many other systems that require
compact antenna structures [12]. The conventional microstrip antenna is a metallic patch
of arbitrary shape that is placed a certain distance, typically less than 0.01A, above a
metallic ground plane. They are typically excited using a coaxial probe from the ground
plane as shown in the inset of Fig. 1, or by a microstrip line in the plane of the antenna
[12]. Due to their resonant nature, however, microstrip patch antennas are inherently
narrowband. Although many techniques have been presented to effectively increase the
bandwidth of the patch antenna, many of the solutions are complicated or require multi-
layer structures [12].

One of the simplest methods for increasing the bandwidth of a patch antenna is to
increase the thickness of the dielectric substrate [12]. The increase in the dielectric
thickness, however, results in the excitation of substrate and surface modes that remove
energy from the main radiation lobe. If a photonic crystal is designed such that the
frequency of the substrate mode overlaps the stop band frequencies, the excited substrate
mode exponentially decays, reducing the energy lost into the substrate. In a crystal of
infinite extent, the substrate mode would be evanescent and no energy would be lost.
Yang et al. originally proposed that high-gain antenna structures could be obtained by
printing an antenna on a two-dimensional photonic crystal [8]. In this section we



describe results where two-dimensional photonic crystals were employed as a means of
eliminating the substrate and surface modes in a patch antenna. In addition, the two-
dimensicnal photonic crystal antenna structure was fabricated with a defect in the
periodicity at the patch antenna location, confining the energy under the antenna. It is
anticipated that this energy confinement will yield a more efficient antenna structure.

Finite-difference-time-domain (FTDT) Studies

The finite-difference time-domain (FDTD) code used in this work was XFDTD®
(Version 4.06), a commercial code available through Remcom, Inc. [13]. The code is
based on the standard Yee cell geometry, and the values of the electric and magnetic
fields are calculated in consecutive time steps [10]. The utility of the program is
manifested in the ability to calculate S-parameters [10]. The Cartesian coordinate system
was employed and the two antennas compared in this work are shown in Fig. 1 with the
coaxial probe excitation shown in the inset. Two sets of simulations were performed.
The initial sets of simulations were used to validate the code through experimental
verification. The second sets of simulations were used to compare a conventional patch
antenna with one that was integrated with a two-dimensional photonic crystal.

For the initial sets of simulations, the patch had a width of 8 mm in the x-direction
and a length of 4.14 mm in the y-direction. The antenna geometry was broken up into a
grid of Ax=0.4 mm, Ay=0.414 mm and Az=0.25 mm in a space of 75x50x25 cells. The
width of the antenna was 20Ax cells and the length of the antenna was 10Ay cells. The
substrate in the FDTD calculation was 1.25 mm, thereby occupying 5 cells in the z-
direction with a dielectric constant of 10.2. The antenna was excited 1.66 mm centered
from the bottom edge of the antenna. The time step used was 0.6294 psec, which is set to
the Courant limit for a general three-dimensional grid [14]. The ground plane was
assumed to be infinite in extent; all other boundaries were set to be absorbing (Liao type).

For the second sets of simulations, the size of the FDTD space was increased such
that the effects of the two-dimensional photonic crystal could be studied. The patch had a
width of 8 mm in the x-direction and a length of 4 mm in the y-direction. The antenna
geometry was broken up into a grid of Ax=0.1 mm, Ay=0.1 mm and Az=0.4233 mm in a
space of 120x135x35 cells. The substrate in the FDTD calculations was 1.27 mm thick,
thereby occupying 3 cells in the z-direction and had a dielectric constant of 10.2. The
time step was taken to be 1.211 psec, which was again set to the Courant limit for a
general three-dimensional grid. For the modeling of the ground plane, two cases were
considered in the simulation. The first case was where the substrate was placed directly
on the lower boundary, where the boundary is a perfect electric conductor (PEC). The
ground plane in this case was infinite in extent. The second case that was considered was
where the substrate was suspended in the FDTD space 10 cells above an absorbing
boundary and a finite PEC layer was used as a ground plane. In both cases all remaining
boundary conditions were set to be absorbing. With the simulations mentioned above, the
finite ground plane effects could be investigated.

The excitation source of the antenna was a Gaussian pulse with a width of 121 psec.
The coaxial probe excitation of the antenna is shown on the inset of Fig. 1. It was found
that a thin wire was the best type of excitation suited for obtaining reasonable agreement



with the experimental results. For the initial set of simulations, the code was run for
10,000 time steps that took approximately thirty minutes on a Pentium Pro, 300 MHz
machine with 256 MB of RAM. For the second set of simulations, the code ran for
approximately 5 hours on the same machine.

Experimental Results

Two antennas were built for measurement. Both had a width in the x-direction of 8
mm and a length in the y-direction of 4.14 mm and were fabricated on a RT-Duroid 6010
substrate with a dielectric constant of 10.2. The thickness of both substrates was 1.27
mm (50 mils). The first antenna had a uniform dielectric substrate as shown in Fig. 1(a),
and the second antenna had the two-dimensional photonic crystal integrated, which was
obtained by drilling holes into the substrate as shown in Fig. 1(b). The photonic crystal
substrate was a triangular lattice with lattice constant of 1.38 ¢cm and a hole diameter of
1.27 cm and was designed to have a gap at approximately 9 GHz [1]. This gap design
was based on a photonic crystal that was infinite in extent in the transverse direction.
The exact mode pattern of the grounded microstrip structure in a two-dimensional
periodicity is currently under investigation.

An HP8340A sweep generator was used to excite the antenna structures and a
Boonton 4200 power meter in conjunction with an X-band horn antenna was used to
detect the radiation. The standard gain horn antenna was placed approximately 4.5 m
away from the transmitter. The transmitting antenna was attached to a computer
controlled rotary stage such that pattern measurements could be made. The excitation
frequency for the antennas was determined by measuring the minimum return loss (Sy1)
using an HP8510 network analyzer.

The network analyzer measurements are compared to the FDTD calculation for the
conventional patch antenna in Fig. 2, where the solid line is S;; measured using the
network analyzer and the line with the markers is the calculated result using XFDTD®.
The calculated results are based on the first set of simulations and are in excellent
agreement with the experiment.

Figure 3 is the result of the second simulation where a finite ground plane was
compared to the infinite ground plane for a conventional patch antenna. Recall that the
second simulation has a coarser grid compared to the first simulation, such that the
effects of a large ground plane and the photonic crystal could be investigated. The solid
line is the infinite ground plane and the dashed line is the finite ground plane. Note that
there is a slight increase in the resonance bandwidth of the finite crystal and a 4.5 dB
increase in the depth of the resonance. However, there is no variation in the resonant
frequency. In addition, the finite ground plane causes off-resonance ringing.

Figure 4 shows the measured pattern of the conventional patch antenna as a
function of the size of the ground plane. Note that, as the size of the ground plane is
increased, the effect is a variation in the back lobe level. The lobes in a microstrip
antenna pattern are due to the finite size of the ground plane. Given an infinite ground
plane, there would be no back lobes. Figure 4(a) is the result for a 57 square ground
plane. Note that the scale on each antenna pattern measurement is 2 dB/division. For the
5” square ground plane the maximum back lobe is 9 dB below the main beam and occurs
at approximately 310°. For the 6” square ground plane in Fig. 4(b), the maximum back



lobe is 11 dB below the main beam and is at 290", For the 9” square ground plane in Fig.
4(c), the maximum back lobe is 10 dB below the main beam at 240",

Figure 5 presents the measured antenna patterns for the patch antenna with the
two-dimensional photonic crystal incorporated as shown in Fig. 1(b). For the 5” square
ground plane in Fig. 5(2), the maximum back lobe is 13 dB below the main beam at
approximately 285°. For the 6” square ground plane in Fig. 5(b), the maximum back
lobe is 11 dB below the main beam at 265 . For the 9” square ground plane in Fig. 5(c),
the maximum back lobe is 15 dB below the main beam at 250", Therefore, the addition
of the two-dimensional photonic crystal to the conventional patch antenna reduces the
back lobe levels for the ground plane sizes considered here.

Figure 6(a) is the S;; measurement for the conventional patch antenna. The
resonant frequency of the conventional antenna is not a function of the size of the ground
plane. On the other hand, Fig. 6(b) is the S;; measurement for the two-dimensional
photonic crystal antenna with the 6” ground plane. Note that the antenna resonance is
broadened in comparison to the conventional antenna, however, the magnitude of the
resonance is lower. The response of the conventional patch has a resonance of 14 dB at a
resonance frequency of 9.324 GHz. The photonic crystal antenna has a resonance of 7.5
dB at a frequency of 9.044 GHz. The weak resonance is due to the poor match of the
source to the antenna, which can be improved by adjusting the location of the feed.

Figure 7 presents results from the calculation of the conventional patch antenna
based on the second set of simulations, shown as the solid line, and the conventional
patch antenna integrated with a two-dimensional photonic crystal indicated by the dotted
line. As in the experiment, the resonance of the photonic crystal antenna is weaker.
However, the resonance frequency does not vary. This implies that the antennas that
were experimentally measured were not identical. Therefore, a shift in the resonant
frequency should not be expected when a photonic crystal antenna 1s used.

Summary

A two-dimensional photonic crystal was integrated with a conventional rectangular
microstrip patch antenna. The properties of this structure and the effects of a finite sized
ground plane on the resonance frequency were studied using an FDTD code.
Calculations compare favorably with experiments. For a finite size ground plane, the
resonance bandwidth is slightly larger and the resonance is deeper than the case of the
infinite size ground plane. Antenna pattern measurements were used to assess the
importance of the size of the ground plane. There is an increase in the back lobe level as
the ground plane size is reduced. The back lobes are due to energy that propagates away
from the antenna in the form of a surface wave and/or a substrate mode. Once the energy
reaches the edge of the ground plane, edge currents re-radiate into the back of the
antenna. Integration with the photonic crystal reduces the level of the edge currents.

The photonic crystal substrate was fabricated with a defect state under the antenna
site. This defect state stores the energy under the antenna. The effects of this defect are
currently under investigation. Preliminary results indicate that the radiated power is
increased due to the energy storage under the antenna. Finally, conventional design tools
for microstrip patch antennas are insufficient to determine the optimal coupling into the



antenna. This is shown in the measurements and calculations that compared the
conventional patch antenna to the photonic crystal antenna. A design tool is currently
being developed to optimize the incorporation of the antenna with the photonic crystal.

II. Frequency domain detection of superluminal group velocity in a One
Dimensional Photonic Crystals (1DPC)

Introduction

Since the introduction of Maxwell’s equations in 1865, and later experimental
verification of propagating electromagnetic waves by H. Hertz [15] in 1888, the velocity
by which these disturbances travel has received much attention. The first mention of
group velocity actually predates Maxwell’s equations and appeared in the published
abstracts of Hamilton [16] dated 1839. The concept was reintroduced by Stokes in 1876
for hydrodynamics, and was generalized into the modern form by Rayleigh in 1877 [17].
In 1905, Einstein’s work in special relativity established the speed of light in vacuum (c)
as a universal limit. Almost contemporaneously, it was known that phase velocity and,
more importantly, group velocity in regions of anomalous dispersion could exceed c.
Sommerfeld in 1907 and Brillouin in 1914 investigated this apparent paradox and in their
authoritative work [18] clearly showed that, for a step-modulated signal propagating
through a Lorentz gas, the forerunners always travel with speed equal to c.

In a 1932 paper, MacColl [19] argued that a transmitted wave packet tunneling
through a potential barrier would appear on the other side of the barrier almost
instantaneously.  Later, in a paper that reignited the most recent debates on
superluminality and tunneling, Hartman [20] put MacColl’s argument on more solid
ground. His analysis implied that for thick enough barriers, the tunneling time is indeed
superluminal. More recently, possibly because of technical difficulties in performing an
experimental measurement of the tunneling time for electrons, attention has turned to the
analogous problem of electromagnetic propagation (photon tunneling) via evanescent
modes through photonic barriers. It is well understood that in its stationary form, the
Schrédinger equation and the Maxwell-Helmholtz wave equation are mathematically
identical [21]. In principle, an experiment involving electromagnetic propagation can
shed light on the problem of electron tunneling [22-24].

In the optical regime, Chiao and coworkers [25] recently found the tunneling
velocity for a single photon through a 1DPC to be superluminal. Spielman et al. [26]
used femtosecond optical pulses to study tunneling through a 1IDPC. They concluded
that the tunneling time is indeed superluminal and were able to measure advances up to 6
femtoseconds.

Direct investigation of superluminal electromagnetic wave propagation are also
possible using microwaves. One of the first experiments was conducted by Ranfagni et
al. [27]. At first, their evanescent (or tunneling) region consisted of an undersized P-band
waveguide connected at both ends to an oversized X-band waveguide. Complicated by
the dispersion and dissipation in the waveguide and spurious effects due to the transition
from X to P-band, their original results were inconclusive. In later efforts they were able
to improve their signal-to-noise ratio and obtain better experimental data [28]. They were
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also able to measure the delay time of leaky waves for a pair of transmitting and
receiving horn antennas [29]. The receiver horn was shifted or tilted with respect to the
launcher and delay times less than the time required by light to traverse the separation in
vacuum were obtained.

Another series of microwave experiments were performed by a German group
[30-34]. Expanding on the work of Ranfagni, et al., they studied propagation through an
undersized waveguide both in the frequency and time-domains. Using the Line-Reflect-
Match waveguide calibration technique, they were able to remove most of the systematic
errors in the experiment. Nimtz and Enders [34] briefly considered transmission through
a 1DPC inserted into a hollow metallic waveguide. This meant that superluminal barrier
crossing was occurring through both 1DPC and the dispersive under-sized waveguide.
Moreover, in this work, and in all of their frequency-domain analysis, they used the
Fourier transform to extend the frequency-domain network analyzer results to the time-
domain. This required an assumption regarding the form of the incident wave packet. In
addition, they used only the response function amplitude to calculate the time-domain
signal. This assumed a constant phase for the response function, strictly true only for an
infinitely long, cutoff waveguide or 1DPC.

In this study we present our results of wave propagation through a 1DPC using

the concept of group delay, 1, = / > Where @ is the phase of the response function.

Within the stationary phase approximation, the group delay is a more natural approach to
understanding propagation through finite length dispersive structures. To accurately
measure phase, a powerful calibration technique was developed to eliminate systematic
errors. These experiments were conducted in free-space, removing the aforementioned
combined response effects and allowing close comparison with theoretical models.

Transfer Matrix Technique

Figure 8 depicts a 1DPC (optical multilayer) consisting of alternating layers of the
dielectric Eccostock® and air. The structure exhibits frequency regions for which
transmission is prohibited (band-gaps) and frequency intervals for which transmission is
allowed (pass-bands). It is for signals propagating through the band-gaps of photonic
crystals (PCs) that superluminal group velocities are expected.

In order to calculate the transmission properties of the finite 1DPC, standard
transfer matrix techniques are followed [35]. The one period matrix M is given by

1 [a b]
l_p'_zj |_b‘ a‘J (1)

?
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and with
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Here 4, is the free-space wavelength, 6, is the incident angle measured from the normal
to the interface, p;; is the TE or TM Fresnel reflection coefficient, n, is the index of

refraction and d, is the thickness of the i or j region. Although conservation of energy
requires M to be unimodular [det(M)=1], M is not unitary [36].

To calculate the transmission coefficient for a 1DPC consisting of N dielectric
slabs, M must be raised to the Nth power. While it is possible to write the resultant
matrix in terms of Chebyshev polynomials [37,38], here the final result is expressed in
terms of the eigenvalues and eigenvectors of the one period matrix as [39],

WL N g-1
M"=SA'S" 5)

where A is a diagonal matrix of eigenvalues and S is the matrix of eigenvectors of M. In
writing Eq. (5) it is only required that M have a complete set of eigenvectors (although
the eigenvalues can be degenerate). Computationally, Eq. (5) reduces the problem of
raising a matrix to the Nth power to raising a scalar to the same power. More
importantly, since the eigenvalues and eigenvectors of M are known, a closed form
expression for M", and accordingly the transmission and reflection coefficients, can be
obtained as given below:

=)t -p)

t=—5 . = i
G I ©
N s N
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where 4, and A, are the eigenvalues of M, expressed as
Az ='(1 = Pz_r )-1
Leostp, +5)-11, s, -5

+ [os@, + 8)- o1, coslp, - 5)] - (-23) | o

with the plus sign for 2, and the minus sign for 1,. Equations (6) and (7) are unchanged
if m; or ny are complex.

Having acquired complex transmission and reflection coefficients, the
transmission and reflection group delays now can be calculated as

(. G_ 24
Jw cw (9)
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Consequently, the normalized group velocity of the transmitted wave is given by
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where L _ is the total physical length of the finite 1DPC,

L.=(N-1(d +d)+d, (12)

Experimental Results

Figure 9 shows the free-space experimental set-up. It consists of two standard K-
band horn antennas (SHA’s) connected to ports 1 and 2 of an 8722D HP Network
Analyzer (NA), configured to measure the transmission coefficient (f or Sz;). The set-up
is enclosed in an anechoic chamber to reduce stray signals. In order to minimize edge
diffraction, Eccostock® slabs with large transverse dimension (31 cm x 31 ¢m) along with
a pair of microwave collimating and focusing lenses were used. In addition to
diffraction, there are at least two other sources of error: the effect of the experimental
components such as the SHAs and lenses on the measurement, and the loss in the
detected signal due to the transmitter-receiver misalignment and propagation losses.

With recent advances in non-coaxial calibration procedures for the NA [40,41]
such as the “Thru-Line-Reflect” (TRL) calibration technique, it is possible to
systematically remove the components’ influences on the measured value of S2;. In this
case the “Thru” standard is a free-space transmission line of length 58.9 ¢m, while the
“Line” standard is a free-space transmission line of length 59.24 cm [41]. The “Reflect”
is a copper plate set mid-way between transmitter and receiver. The “Thru” is used to set
the reference plane from which the transmission loss (I1) and insertion phase (p) are
measured. Performing the TRL calibration in free-space eliminates any contributions
from waveguide dispersion and losses associated with inserting the 1DPC into a
waveguide [34]. This experimental design simplifies extracting the response of the
1DPC from its surroundings.

After calibrating the system (without the 1DPC), a reference plane of unit
magnitude for |4 and zero phase for ¢ is established mid-way between the two SHA’s.
At this point, the 1DPC is inserted and the receiver horn is moved back exactly by
distance L . This ensures that the measured transmission coefTicient is solely due to the

IDPC. Clearly, moving the transmitter backward introduces some propagation losses.
This small loss (+7) can be measured and its contribution can be deconvolved from the
measured response according to

i (@)= 1 (@)1 (@), (13)



where 77 is the desired response function. To precisely control the backward movement
of the receiver antenna, the insertion phase introduced by traveling the distance L  can

be monitored. By averaging traces, phase variations as small as one degree can easily be
detected. From Eq. (14) below, it is clear that at 21.5 GHz, a phase error of one degree
corresponds to accuracy of 0.004 cm in length.

Agpc

Az= .
2.0V

(14)

Figure 10 shows the calculated transmission coefficient magnitude and phase
[It’” (wj 0], and the raw measured values for a 1DPC with N=3. Despite the fact that

the signal amplitude has decreased by a factor of 20 in the band-gap, expenment and
theory agree quite well. The average complex index of refraction for Eccostock® was
measured to be 3.4 -10.002 over the frequency range of the interest. The thicknesses of
the Eccostock® slab and the air-spacer were determmed to be 1.33 and 1.76 cm,

respectively. The high value of the index for Eccostock™ provides the opportumty to use
a minimal number of slabs to obtain the desired response, further minimizing the effect of
propagation losses. On the other hand, compared to other microwave materials such as
polycarbonate, Plexiglass or Teflon, Eccostock demonstrates more inhomogeneities.

This inhomogeneity can account for the small differences between the theoretical and
experimental results. An interesting aspect of the set-up shown in Fig. 9 is that the same
arrangement and calibration technique can be used to measure the real and imaginary part
of the index of refraction for any sheet materials. Simply by measuring k| and o for one
slab, and with the help of the Eq. (6) with N=1, the real and imaginary part of the index
can be calculated over the frequency range of interest [42].

Finally, upon closer examination of measured transmission coefficient, some
small ripples in the response of the 1DPC is detectable. Within the theory of operation
for the NA, these small modulations are well understood and are attributed to an
imperfect source and load mismatches [43]. Unfortunately, these effects cannot be
removed by using the TRL calibration technique. More importantly, according to Eqs.
(9) and (11), the phase of the transmission coefficient is of greatest interest. Figure 11 is
the calculated and measured unwrapped phase for a 1DPC with three, two and one
dielectric slabs. As might be suspected, with increasing N, the finite length 1DPC
approximates the infinite 1DPC more closely, and in the limit of N — oo, the phase of the
transmitted wave must approach a constant value [44]. This behavior is clearly exhibited
in Fig. 11.

To obtain the group delay or group velocity, the curves depicted in Fig. 11 must
be differentiated. The application of the differential operation on a data containing noise
amplifies the noise and may lead to spurious effects. On the other hand, smoothing the
phase data prior to differentiation is an arbitrary process that gives results which vary
critically with the smoothing parameters. The approach used here is to obtain the best
nonlinear least square fit to the experimental data. Since, the comparison between the
theory and measurement (Fig. 11) is good and the theoretical model (Eq. 6) for the
insertion phase of 1DPC is well established, the best fit to the phase data can be obtained
as a function of the dielectric and spacer thicknesses (d, @) and dielectric index of
refraction (7). A Fortran program based on the IMSL subroutine DBCLSF, which uses a
modified Levenberg-Marquardt algorithm and a finite-difference Jacobian to obtain the



best least square fit was developed. Figure 12 shows the result of the least square fit to
the phase data of Fig. 11 together with applying Eqs. 9 and 11 to determine the
normalized group velocity of a 1DPC with one, two and three dielectric slabs.

Along with the velocities derived from the fit (dotted curves), the nominal group
velocities calculated from measured values of thicknesses and the indices [45] are also
shown (solid curves). The fitting parameters for the case N=3 were d, =1.794 cm,

d, =1.399 cm, and the real part of the Eccostock® index (n;.) was 3.216 [46].

A closer examination of Fig. 12 reveals that, while one dielectric slab (N=1) is
insufficient to produce superluminal group velocities, two slabs are sufficient to set up
the interferences resulting in a group velocity exceeding c¢. In the next section, the
sensitivity of the normalized group velocity to the experimental parameters will be
discussed.

Sensitivity Analysis

As the peak group velocity depicted in Fig.12 occurs in the region of maximum
attenuation of the transmitted signal, it is important to analyze the experimental
uncertainties involved. In general, the measured phase is a function of five variables:
frequency (v), spacer index (), spacer thickness (d)), dielectric slab index (1), and
thickness (d)).

The HP Network-Analyzer 8722D has a 1 Hz frequency resolution and an
accuracy of +10 ppm [40]. In the above experiment, the frequency interval between two
adjacent points was set to 10 MHz, and the “step sweep” mode of the analyzer was used
in order to obtain greater frequency accuracy. In addition, since the spacer is nominally
air, the spacer index (n;) is taken as unity. However, the remaining three variables
deserve a closer look.

In general, the variation of any function in terms of a given variable can be
approximated by a difference equation. For example, variation of the normalized group
velocity with respect to spacer thickness is given by

v die 2
L&(V/c)wAd—u=Ad,.2—gzr(th)ﬁa-+L < “ﬂ (15)
a4 ¢ (@plovy |
where 8p/ v is proportional to group delay. Expressions for the variation of normalized
group velocity with respect to the other variables (dj, ;) are similar to Eq. (15). In
calculating the derivatives, it is assumed that the phase is a function of frequency and one
other independent variable (e.g., d;), while the other two variables (e.g. 7;,d)) are assumed
to be constant. A Fortran program using the IMSL routine DBS2DR was written to
compute the two-dimensional tensor-product spline interpolant and its derivative. The
results for given nominal values [45] of the variables for the case N = 3 are depicted in
Fig. 13.

From Fig. 13 it is evident that the experimental measurement is insensitive to
uncertainty in parameters at mid-gap or equivalently, at the peak group velocity. In
general, the experimental group velocity is most sensitive to the dielectric slab’s
thickness with a maximum absolute value of 42.2 over the range of 20 to 23 GHz. On the
other hand, using the phase measurement technique described by Eq. (14) or by using
other methods, accuracies up to 0.004 cm are easily attainable. This means that




maximum absolute error in normalized group velocity due to the dielectric-slab thickness
is about 0.17. The maximum error over the range for which superluminal behavior is
exhibited (approximately 21 to 22 GHz) is 0.14. The experimental errors due to spacer
thickness over the entire frequency range of 20 to 23 GHz is even smaller, since the

o, /c
maximum absolute value of - is 6.57 as compared to 42.2.

Finally, analysis of the experimental errors associated with the measured
Eccostock® index of refraction were based on measurement of the dielectric constant of
1.33 cm of air after the TRL calibration had been performed. These result in a maximum
uncertainty in the Eccostock® index of approximately 0.01. Given the maximum absolute

o, /c
value for (3 %, over the frequency range 20 to 21 GHz of 14.2, experimental
2

errors in normalized group velocity of the order of 0.14 can be expected. Again, this
error decreases to zero at mid-gap. From the above analysis it is clear that experimental
errors are incapable of placing the normalized group velocity depicted in Fig. 12 below
the light line.

A few remarks regarding the zeroes of the derivatives shown in Fig. 13 are in
order. These represent frequencies at which the sensitivity of the measured variable
(group velocity) with respect to the experimental parameters is identically zero. From a
physical point of view, the insensitivity at the mid-gap occurs since the 1DPC exhibits
minimal group velocity dispersion at frequencies around 21.7 GHz. This minimizes the
term in the brackets of Eq. 15. The zero crossings at the band-edges occur because the

group delay (—5%;“9‘,), is very large and the term outside the brackets in Eq. 15

dominates. From a technological point of view, the ability to design optical multilayers
or delay lines for which the desired response is insensitive to variations in material
parameters is of great importance. In fact, the inverse of the problem presented in this
manuscript can be addressed by solving expressions such as Eq. (15) for the dielectric-
slab and spacer thicknesses and indices, in order to design dielectric mirrors or delay
lines that are less sensitive to component variations.

Summary

This section of the final progress report described the detection of superluminal
group velocities in the frequency domain. Diagonalization of the transfer matrix is used
to obtain analytical closed form expressions for both transmission and reflection
coefficients. Measuring a 1DPC in free space enables removal of extraneous dispersion
and dissipation and allows de-embedding the 1DPC properties. An experimental protocol
based on the TRL calibration procedure was described resulting in good agreement
between the experimentally measured and theoretically calculated phases. Accurate
measurement of the transmission phase allows calculation of the group delay and group
velocity.

The ability to actually measure superluminal group velocities questions the
traditional notion that in regions of resonances, group velocity is “...not a useful concept
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...” [47] or has “...no longer any appreciable physical significance...” [48]. However, it
must be emphasized that this superluminal behavior is in no way in contradiction with
special relativity or causality. In fact, it can be shown that superluminal group velocities
are the consequence of linear time invariant systems which obey Kramers-Kronig
relations and hence are inherently causal [49-53]. In the case of propagation through a
1DPC, the energy velocity remains subluminal [54], although, this is not a universal
requirement for the energy velocity [52,53]. More importantly, under no circumstances
does the front (forerunner) velocity exceed the speed of light in vacuum.



Figure Captions

FIG. 1: (a) Conventional patch antenna with a coaxial probe exciation (inset); (b) Two-
dimensional photonic crystal that is integrated into the convenional patch.

FIG. 2: S;; measured (solid line) using a network analyzer and calculated (line with
markers) using the FDTD code. There is excellent agreement between the calculations
and the measurements.

FIG. 3: S;; calculated using the FDTD code. The effects of a finite ground plane are
investigated. The solid line is an infinite ground plane and the dashed line is a finite
ground plane. Note that the bandwidth of the resonance for the patch is slightly increased
(the depth is slightly increased for a finite-sized ground plane).

FIG. 4: Measured antenna pattern for various-sized ground planes: (a) 5” ground plane;
(b) 6” ground plane; (c) 9” ground plane. Note that the back lobe level decreases as the
size of the ground plane increases.

FIG. 5: Measured antenna pattern for a two-dimensional photonic crystal integrated with
a conventional patch antenna with a varying-sized ground plane: (a) 5 ground plane; (b)
6” ground plane; (c) 9” ground plane. Note that the back lobe levels are reduced when
compared with a conventional patch antenna.

FIG. 6. (a) Measured S;; for a conventional microstrip patch antenna. (b) Measured S;;
for an antenna integrated with a two-dimensional photonic crystal. Note that the depth of
the resonance is reduced, implying a non-optimal excitation location.

FIG. 7: Sy; calculated for the conventional patch antenna (dashed line) compared to the
two-dimensional photonic crystal antenna (solid line). Note that the resonance is
decreased due to a non-optimal excitation location.

FIG. 8: Schematic of the one dimensional photonic crystal (1DPC).

FIG. 9: Free-space experimental set-up.

* FIG. 10: Measured (thin-dotted line) and calculated (thin-solid line) transmission phase
and measured (thick-dashed line) and calculated (thick-solid line) transmission amplitude

for a 1DPC with N=3.

FIG. 11: Calculated (solid line) and measured (dotted line) unwrapped transmission
phase.

FIG. 12: Nominal (solid line) and fitted (dotted line) normalized group velocity for a
1DPC with N=3, 2, and 1.



FIG. 13: Sensitivity of the normalized group velocity to experimental parameters such as
spacer thickness (solid line), dielectric-slab thickness (dashed line), and dielectric index
of refraction (dotted line).
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3. List of Presentations and Publications

. K. Agi, “Properties and Applications of Microwave Photonic Crystals

(Invited),” presented to New Jersey Section of the IEEE, Newark, NJ, Jan.
1998.

K. Agi, “Properties and Applications of Microwave Photonic Crystals
(Invited),” presented to Aerospace Technology Group, Allied Signal, Inc.,
Morristown, NJ, Jan. 1998.

K. Agi, “Evolution of the Dispersive Properties of Photonic Crystals
(Invited),” Physics Department Colloquium, University of Alabama,
Huntsville, AL, Jan. 1998.

K. Agi, “Temporal Evolution of Dispersive Properties of Photonic Crystals
(Invited),” presented to U.S. Army Aviation and Missile Command, Weapons
Science Directorate, Red Stone Arsenal, AL, Jan. 1998.

K. Agi, K.J. Malloy, E. Schamiloglu, and M. Mojahedi, “Compact Microstrip
Patch Antennas on Photonic Crystal Substrates (Invited),” USNC/URSI
National Radio Science Meeting, Atlanta, GA, June 1998.

K. Agi, K.J. Malloy, E. Schamiloglu, M. Mojahedi, and E. Niver, “Integration
of a Microstrip Patch Antenna with a Two-Dimensional Photonic Crystal
Substrate (Invited),” to appear in Electromagnetics, Jan. 1999.

K. Agi, M. Mojahedi, B. Minhas, and K.J. Malloy, “Integration of a
Microstrip Patch Antenna with a Two-Dimensional Photonic Crystal Substrate
(Invited),” presented at Workshop on Electromagnetic Crystals (WECS),
Laguna Beach, CA, Jan. 1999.

M. Mojahedi, E. Schamiloglu, K. Agi, and K.J. Malloy, “Frequency Domain
Detection of Superluminal Group Velocity in One-Dimensional Photonic
Crystals,” submitted to Phys. Rev. E. Jan. 1999,

M. Mojahedi, E. Schamiloglu, F. Hegeler, G.T. Park, K. Agi, and K.J. Malloy,
“Time-Domain Detection of Superluminal Group Velocity using Single
Microwave Pulses,” to be submitted to Phys. Rev. Lett., 1999.

M. Mojahedi, E. Schamiloglu, K. Agi, and K.J. Malloy, “A Simple Free Space
Method to Measure Dielectric Constants and Superluminal Group Velocities,”
submitted to IEEE Trans. Microwave Theory and Tech., 1999.
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Edl Schamiloglu, Associate Professor EECE, Co-PI.

Kevin Malloy, Associate Professor EECE, Co-PI

Kamil Agi, Research Engineer

Mohammad Mojahedi, Ph.D. Candidate (to be completed May 1999).

5. Report of Invention

. K. Agi and K.J. Malloy, “Microstrip Patch Antennas on Two-Dimensional

Photonic Crystals Incorporating Defects in the Periodicity,” Invention
disclosure filed with the University of New Mexico Patent Office, Docket
Number UNM-518, December 15, 1998.
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