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Ideal (Hertzian) Dipole

A very simple radiating element we can study is the ideal dipole, also known as Hertzian dipole and
infinitesimal dipole. It is very short (length � λ), and as such has current uniformly distributed
along its length.

Although it is difficult to implement in practice (having a current distribution that is difficult to
realize since it is discontinuous), it is highly useful for helping analyze larger wire antennas which
can be subdivided into short sections having uniform current (i.e., ideal dipoles). Then, much
in the same way as we derived vector potential for a continuous current distribution, we can use
superposition to find the fields of a long wire antenna.

Let’s orient the ideal dipole along the z-axis and denote the current flowing through the dipole
as I. The current has an associated surface current density J .

In this illustration, R is the distance from the current element to the field point P , and r is the
distance from the origin to P .
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First, we need to derive the vector potential of the line source. It is a continuous current distri-
bution over its length ∆` = ∆z. Since we only have a z-component of current, A will only have
a z-component as well.

Recall

A =

ˆ
V

µJ
e−jkR

4πR
dv′ =

˚
µJ

e−jkR

4πR
dx′dy′dz′ (1)

in Cartesian coordinates. Here,

J(r′) =

{
I0δ(x

′)δ(y′)ẑ ∆z/2 < z′ < ∆z/2
0 elsewhere

(2)

since the dipole is infinitely thin. Therefore,

A = ẑµI0

ˆ ∞
−∞

δ(x′)dx′
ˆ ∞
−∞

δ(y′)dy′
ˆ ∆z/2

∆z/2

e−jkR

4πR
dz′ (3)

= ẑµI0

ˆ ∆z/2

∆z/2

e−jkR

4πR
dz′. (4)

Evaluating the integral, we first notice that since ∆z is small, R does not change significantly as
we move along the length of the dipole, (i.e. r ≈ R). So we can effectively say that R is not a
function of z′, making the integral simple to evaluate:

A = ẑµI0
e−jkr

4πr

ˆ ∆z/2

∆z/2

dz′ =
µI0e

−jkr

4πr
∆z ẑ. (5)

Now we can find the radiated magnetic field of the dipole:

H =
1

µ
∇×A =

1

µ
∇× Az ẑ. (6)

Since we know the analysis of point sources revealed spherical wave solutions, it is best to evaluate
this curl in spherical coordinates. So first we need to convert A to spherical coordinates:

Ar = A · r̂ = Az ẑ · r̂ = Az cos θ (7)

Aθ = A · θ̂ = Az ẑ · θ̂ = −Az sin θ (8)

Aφ = A · φ̂ = Az ẑ · φ̂ = 0. (9)

Reminder: curl in spherical coordinates is

∇×A =
1

r2 sin θ

∣∣∣∣∣∣
r̂ r θ̂ r sin θ φ̂
∂
∂r

∂
∂θ

∂
∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣ (10)

Prof. Sean Victor Hum Radio and Microwave Wireless Systems



Ideal (Hertzian) Dipole Page 3

∇×A =
1

r2 sin θ

∣∣∣∣∣∣∣
r̂ r θ̂ r sin θ φ̂
∂
∂r

∂
∂θ

∂
∂φ

µI0e−jkr

4πr
∆z cos θ −µI0e−jkr

4π
∆z sin θ 0

∣∣∣∣∣∣∣ (11)

=
1

r2 sin θ

{
r̂

[
∂

∂θ
(0) +

∂

∂φ

µI0e
−jkr

4π
∆z sin θ

]
−

r θ̂

[
∂

∂r
(0)− ∂

∂φ

µI0e
−jkr

4πr
∆z cos θ

]
+

r sin θ φ̂

[
− ∂

∂r

µI0e
−jkr

4π
∆z sin θ − ∂

∂θ

µI0e
−jkr

4πr
∆z cos θ

]}
(12)

=
1

r2 sin θ
· r sin θ φ̂

[
jkµI0e

−jkr

4π
∆z sin θ +

µI0e
−jkr

4πr
∆z sin θ

]
(13)

=
µI0∆ze−jkr

4π
sin θ

(
jk

r
+

1

r2

)
φ̂. (14)

Now,

H =
1

µ
∇×A =

I0∆z

4π

(
jk

r
+

1

r2

)
e−jkr sin θ φ̂ (15)

=
I0∆z

4π
jk

(
1 +

1

jkr

)
e−jkr

r
sin θ φ̂. (16)

Next, we find the electric field from Maxwell’s curl equation:

E =
1

jωε
∇×H (17)

∇×H =
1

r2 sin θ

∣∣∣∣∣∣
r̂ r θ̂ r sin θ φ̂
∂
∂r

∂
∂θ

∂
∂φ

Hr = 0 Hθ = 0 r sin θ I0∆z
4π

(
jk
r

+ 1
r2

)
e−jkr sin θ

∣∣∣∣∣∣ . (18)

Evaluating the curl in the same manner as for the magnetic field case, we arrive at the final
solution for E:

E =
I0∆z

2π
η

(
1

r
− j

kr2

)
e−jkr

r
cos θ r̂ +

I0∆zjωµ

4π

[
1 +

1

jkr
− 1

(kr)2

]
e−jkr

r
sin θ θ̂. (19)

Now, let’s interpret the meaning of all these fields. The first situation we wish to consider is the
so-called far field of the antenna, which is analytically defined as when r is large (r � λ)1. Then,
all the terms with r in the denominator tend to zero, and we are left with

Eff =
I0∆zjωµ

4π

e−jkr

r
sin θ θ̂ (20)

Hff =
I0∆z

4π
jk
e−jkr

r
sin θ φ̂. (21)

1We will study another definition of where the far field is defined later.
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Some important observations:

• E no longer has a radial component; in the far field, it is totally polarized in the θ̂ direction;

• E and H are orthogonal to each other and the direction of propagation and hence the
resulting wave is TEM (as we expect for a spherical wave);

• The ratio of Eθ/Hφ is
Eθ
Hφ

=
ωµ

k
=

√
µ

ε
= η (22)

which is also what we found for a plane wave. We shall see that this is a property of radiated
fields.

What is the power radiated by the antenna? First we compute the Poynting vector of the far
fields components,

P =
1

2
E ×H∗ =

1

2
EθH

∗
φ r̂, (23)

since E and H are orthogonal (θ̂ × φ̂ = r̂). Then,

Pr =
1

2

I0∆zjωµ

4π

e−jkr

r
sin θ · I0∆z

4π
(−jk)

ejkr

r
sin θ (24)

P =
I2

0 ∆z2ωµk

2(4πr)2
sin2 θ r̂. (25)

An important observation is that P rolls off as 1/r2, indicating that a square-law in power density
with distance (i.e. double the distances gives quadruple the loss [-6 dB]). Now we surround the
dipole with an imaginary sphere of radius r and compute the power by taking the surface integral
of the (radiated) power density:

Wrad =

ˆ
S

P · ds′ =
ˆ π

0

ˆ 2π

0

S · r2 sin θ r̂dφdθ (26)

= 2π

ˆ π

0

(
I0∆z

4π

)2
ωµk

2
sin3 θdθ (27)

=
(I0∆z)2

12π
ωµk, (28)

where we note that
´ π

0
sin3 θdθ = 4/3. Since P is real, it is dissipated or radiated power (versus

stored [imaginary] power).

Let’s focus on the structure of the electric field expression in the far field for a moment, since the
magnetic field is readily computed knowing the intrinsic impedance of the medium. We observe
that the electric field can be expressed as follows:

E =
I0∆z

4π
jωµ︸ ︷︷ ︸

strength factor

· e−jkr

r︸ ︷︷ ︸
distance factor

· sin θ︸︷︷︸
shape/element factor

· θ̂. (29)

The expression can be separated into the product of three components:
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• Strength factor – determined solely by material parameters, magnitude of excitation current,
and dipole length

• Distance factor – purely the amplitude decay and phase shift incurred with distance

• Shape factor – determined the radiation pattern of the antenna, or the part that is a function
of θ, φ.

At this point it is worth comparing the far-field electric and magnetic fields to the vector potential
in (5). Notice that in the far field, Eθ = −jωAθ. The dipole only radiates a θ-polarized E-field,
but it can be shown that if it radiated in the φ-polarization as well, in the far field, Eφ = −jωAφ.
Also, there is no radial component of E in the far field, nor is there a radial component in the
vector potential. Hence, just for far-field electric and magnetic fields, we can say:

Eff ≈ −jωA (30)

Hff ≈
r̂

η
×Eff = −j ω

η
r̂ ×A. (31)

These equations form a fast an easy way to determine the far-field radiated electric field, without
going through two curl operations as we had to do before.

We have considered the far field quantities to this point. What about the other fields? Since
they are not in the far field, they are in the so-called near field of the antenna, or where r � λ.
Examining the expressions for E and H , under this condition the 1/rn terms dominate and we
have:

Hnf =
I0∆ze−jkr

4πjkr2
jk sin θ φ̂ =

I0∆ze−jkr

4πr2
sin θ φ̂ (32)

Enf =
I0∆z

4π
jωµ

[
1

jkr
− 1

(kr)2

]
e−jkr

r
sin θ θ̂ +

I0∆z

2π
η

[
1

r
− j 1

kr2

]
e−jkr

r
cos θ r̂. (33)

In the expression for Enf, the 1/r3 terms dominate for small r, so

Enf =
−I0∆z

4π
jωµ

e−jkr

k2r3
sin θ θ̂ − j I0∆z

2π
η
e−jkr

kr3
cos θ r̂. (34)

Since ωµ/k = η,

Enf =
−jI0∆z

4πk
η
e−jkr

r3
sin θ θ̂ − j I0∆z

2π
η
e−jkr

kr3
cos θ r̂. (35)

What is the practical significance of these fields? We make two important observations with
comparison to familiar fields from statics:

• Hnf
φ : With the exception of the e−jkr term, this expression very closely resembles the field

of a static current element along the z-axis.
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• Enf
θ : With the exception of the e−jkr/k term, this expression resembles the static field of

an electric dipole.

Let’s discuss these observations by examining/deriving the static fields in question. Starting with
the first observation, recall from the Biot-Savart Law that for a short (infinitesimal) segment of
current, the magnetic field intensity produced is

dH =
I0d`×R

4πR3
. (36)

For a current element at the origin, R = r r̂ and

dH =
I0d`× r̂

4πR2
⇒ ∆H =

I0∆`× r̂
4πR2

. (37)

Since

∆`× r̂ = ∆` ẑ × r̂ =

∣∣∣∣∣∣
r̂ θ̂ φ̂
cos θ − sin θ 0
1 0 0

∣∣∣∣∣∣ = sin θ φ̂, (38)

∆H =
I0∆`

4πr2
sin θ φ̂. (39)

Furthermore, if ω → 0 (frequency approaches DC), k → 0 and the expression for Hnf becomes
identical to the induction field derived above. Therefore, we can say that the magnetic field in
the near field of a dipole resembles that of a steady magnetic field (induction field) produced by
the element.

Now for the electric field term. From electrostatics you may recall analyzing an electric dipole:

The potential at point P is equal to

V =
Q

4πε

(
1

R1

− 1

R2

)
=

Q

4πε

R2 −R1

R2R1

. (40)
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For sufficiently distant P , R2 −R1 = ∆z cos θ, R ≈ r,

V =
Q∆z cos θ

4πεr2
, (41)

and

E = −∇V =
Q∆z cos θ

2πεr3
r̂ +

Q∆z sin θ

4πεr3
θ̂. (42)

We notice a remarkable between this expression and Enf without the exponential term:

−jI0∆zη

2πkr3
cos θ r̂ − jI0∆zη

4πkr3
sin θ θ̂ =

1

jω

(
I0∆z

2πεr3
cos θ r̂ − I0∆z

4πεr3
sin θ θ̂

)
. (43)

Since in real-time notation 1/jω represents a time integral, and
´
I dt = Q, this expression

identically equals the static dipole field derived above! So, the electric field in the near field
resembles the static field of an electric dipole of the same length as the antenna dipole.

We can make a conclusion that the fields close in to a Hertzian dipole resemble the fields produced
in static conditions.

We can also show that these fields are storing energy : both E-field components are in phase
quadrature with the H-field component, indicating reactive power. Explicitly evaluating the Poynt-
ing vector, we find

P nf =
1

2

[
Enf
θ H

nf∗
φ r̂ − Enf

r H
nf∗
φ θ̂

]
(44)

=
−jη
2k

(
I0∆z

4π

)2
1

r5

(
sin2 θ r̂ − cos θ sin θ θ̂

)
, (45)

which is imaginary (power flow/dissipation is always real). Since the power is imaginary, is
represents stored energy in the electric/magnetic (near) fields of the antenna. At one point in
the cycle, all the energy is stored in charge accumulations at the ends of the antenna (like an
electric dipole), and the antenna is acting very much like a capacitor with the dipole ’ends’ acting
as plates giving a fringing capacitance. A quarter cycle later, the two charges have produced a
current through the dipole which creates the near induction field we described earlier. A quarter
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cycle later, the magnetic field has collapsed producing an EMF that charges the ’capacitor’ back
up with the charge polarity reversed, and so on.

Note that this phase quadrature of E and H reminds us of phase quadrature between V and I
in a familiar component: as E lags H by 90◦ (1/j), in what component does V lag I by 90◦?

The answer is in a capacitor, V
I

= (jωC)−1. So, in the near field, this antenna is acting very
much like a capacitor with the dipole ’ends’ acting as plates giving a fringing capacitance.
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