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Friis’ Formula and Effects

Friis’ transmission formula in free space is

Wr

Wt

=
GrGtλ

2

(4πR)2
. (1)

This equation assumes the following:

1. That the antennas are “pointed” at each other such that we obtain the maximum spatial
response from each antenna (i.e., that Gr and Gt are the maximum gains associated with
the antennas;

2. That the transmitter and receiver are perfectly impedance-matched to the antennas;

3. That the transmit and receive antennas are perfectly co-polarized (have the same polariza-
tion, and aligned for that polarization).

We will now modify Friis’ formula to account for each of these effects.

1 Antenna Pointing

The effect of arbitrary transmitter/receiver antenna pointing can be easily addressed by making
the gain terms in Friis’ formula functions of pointing angle.

Wr

Wt

=
Gr(θr, φr)Gt(θt, φt)λ

2

(4πR)2
(2)

2 Impedance Mismatch

Let’s consider the model of the receive antenna presented previously:
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The power delivered to the load resistor is

WD =
1

2
IAI

∗
ARL =

1

2
|IA|2RL, (3)

where

IA =
V

ZA + ZL
=

V

(RA + jXa) + (RL + jXL)
. (4)

Therefore,

WD =
1

2

|V |2RL

(RA +RL)2 + (XA +XL)2
. (5)

The maximum available power from the source that is delivered to the load is produced when the
load is conjugately matched to the source impedance; that is, ZL = Z∗

A, yielding

WD,max =
1

8

|V |2

RA

. (6)

If the load and antenna impedances are mismatched, the impedance mismatch factor represents
the fraction of maximum available power that is actually delivered to the load. The remainder of
the power is reflected from the load, essentially lost.

qr =
WD

WD,max

=
4RARL

(RA +RL)2 + (XA +XL)2
(7)

We can also express the impedance mismatch factor in terms of receiver reflection coefficient.
Defining

Γr =
ZL − Z∗

A

ZL + ZA
, (8)

we can proceed as follows1:

|Γr| =
(RL + jXL)− (RA + jXA)

(RL + jXL) + (RA + jXA)
(9)

|Γr|2 =
(RL −RA)2 + (XL +XA)2

(RL +RA)2 + (XL +XA)2
(10)

1− |Γr|2 =
4RARL

(RA +RL)2 + (XA +XL)2
. (11)

1The conjugate in (8) follows from the fact that ZA is complex, a situation not seen in ECE320/357.
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Therefore,
qr = 1− |Γr|2. (12)

This situation also applies to the transmitter circuit, where an antenna of impedance ZL could
be seen as being driven by source with an impedance ZA, as per the circuit diagram presented
above. Hence, we can define a transmitter impedance mismatch factor qt in the same manner:

qt = 1− |Γt|2. (13)

The modified Friis’ formula becomes

Wr

Wt

=
Gr(θr, φr)Gt(θt, φt)λ

2qtqr
(4πR)2

(14)

3 Polarization Mismatch

The analysis of polarization mismatch between two antennas is facilitated through the vector
effective length concept visited earlier in the course. Examining the equation for received terminal
voltage, we see that polarization information about the incident wave is in Ei and polarization
information about the receiving antenna is in `eff . Received power is proportional to |V oc

r |2;
therefore, normalizing |V oc

r |2 as follows gives the fraction of power received when the incident
field and antenna are potentially polarization mismatched. This factor is called the polarization
loss factor :

p =
|Ei · `eff |2

|Ei|2|`eff |2
(15)

=

∣∣∣∣ Ei

|Ei|
· `eff
|`eff |

∣∣∣∣2 (16)

= |êi · ˆ̀eff |2. (17)

Here, êi is a complex unit vector describing the polarization of the incident wave (its polarization
vector) and ˆ̀

eff describes the direction (polarization vector) of the vector effective length of the
receiving antenna. We now make the following definitions:

• If |êi · ˆ̀eff | = 1, the incident wave and the antenna are said to be co-polarized. Maximum
power transfer occurs between the incident wave and the antenna.

• If |êi · ˆ̀eff | = 0, the incident wave and the antenna are said to be cross-polarized. No
power transfer occurs between the incident wave and the antenna.

There are situations where each of these cases are desirable. Some applications use different
polarizations for conveying independent signals; in this case, we want no cross-correlation between
orthogonal polarization channels in the system. However, in other applications we may want the
receiver to be insensitive to the polarization of the incoming wave.

Prof. Sean Victor Hum Radio and Microwave Wireless Systems



Friis’ Formula and Effects Page 4

Polarization Cases

Recall that the polarization vector of a wave is defined when the antenna is in a transmitting mode.
Previously, when we discussed polarization, the +z direction was assumed to be the direction of
transmission, which we will assume here. Since the polarization vector (vector effective length)
of an antenna is defined when it is transmitting, we need to need to consider an incident field
approaching from the opposite direction in our analysis, which is the −z direction.

Case 1: Receiving an LP wave with an LP antenna

In the transmitting antenna’s coordinate system,

ˆ̀
eff = cos τ x̂ + sin τ ŷ (18)

Meanwhile, the incident electric field, expressed in the same coordinate system, has

Einc = E0ê
ie+jkz (19)

and
êi = cos τi x̂ + sin τi ŷ, (20)

where we note that the incident field is propagating in the −z direction. Then,

êi · ˆ̀eff = cos τ cos τi + sin τ sin τi = cos(τi − τ) = cos(∆τ). (21)

Therefore,
p = cos2(∆τ). (22)

Examples:

• ∆τ = 0◦, antenna aligned with incident field, p = 1 = 0 dB.

• ∆τ = 45◦, p = 1
2

= −3 dB: only have the power is intercepted by the receiving antenna.

• ∆τ = 90◦, antenna cross-polarized with incident field, p = 0 = −∞ dB.
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Case 2: Receiving an CP wave with a CP antenna

Question: How do we make a CP antenna? We know in general, for a wave travelling in the +z
direction,

E = (E1 x̂ + E2 exp(jδ) ŷ)e−jkz = E0e
−jkz. (23)

Recall that in CP antennas/waves, a ±90◦ phase shift is introduced between the x- and y-
components of the radiated fields, i.e., δ = 90◦ for LHCP and δ = −90◦ for RHCP. The field
magnitudes are also the same (E1 = E2). Therefore, for CP,

E0 = E1 x̂± jE1 ŷ =
√

2E1ê0, (24)

where

ê0 =
x̂± jŷ√

2
. (25)

From this we can see that we can make a CP wave with two linear cross-polarized antennas
(e.g. dipoles) with a ±90◦ phase delay in one radiated field with respect to the other. In dipoles,
for example, we know the radiated field is directly proportional to the drive current. Therefore, if
we wanted to realize a CP antenna from two cross-polarized dipoles, we could do so be feeding
one dipole directly and another via a λ/4 transmission line to create the 90◦ phase delay.

For this RHCP example, we can write

ˆ̀
eff =

1√
2

(x̂− j ŷ). (26)

We now consider an expression for the incident electric field. Let’s say that the indident wave is
RHCP. Then, in the coordinate system shown, we can see that

êi =
x̂ + jŷ√

2
(27)
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since the y-component must lead the x-component for an RHCP wave travelling in the −z
direction. The polarization loss factor between an incoming RHCP wave, and an RHCP antenna,
is calculated as

p = |êi · ˆ̀eff |2 (28)

=

∣∣∣∣12(x̂ + j ŷ) · (x̂− j ŷ)

∣∣∣∣2 (29)

= 1. (30)

Therefore, a RHCP-polarized antenna (one designed to produce RHCP during transmission) is
co-polarized with an incident RHCP wave. Think of shaking hands with another person: you
both use the same hand the grasp the other person’s.

This also make sense when we think of how we made an RHCP antenna from two crossed dipoles
and a λ/4 delay line. When receiving, the y-polarized signal enters the antenna and gets delayed
by 90◦ with respect to the received x-polarized signal. But the y-polarized signal is already leading
the x-polarized signal by 90◦, so the delay line cancels this out and we get constructive interference
when we add the two signals coming from the receive dipoles together.

For an LHCP wave incident upon an RHCP antenna, it is easy to show that

p = 0, (31)

i.e., the antenna and wave are cross-polarized. Using the same argument above, we can see that
this will lead to destructive interference when the two dipole received signals are added, and hence
no power will be received.

Case 3: Receiving an CP wave with an LP antenna – or vice versa

We have shown that an LP antenna has

ˆ̀
eff = cos τ x̂ + sin τ ŷ. (32)

A CP wave has

êi =
1√
2

(x̂± j ŷ), (33)

so

p = |êi · ˆ̀eff |2 (34)

=

∣∣∣∣12(x̂± j ŷ) · (cos τ x̂ + sin τ ŷ)

∣∣∣∣2 (35)

=

∣∣∣∣ 1√
2

(cos τ ± j sin τ)

∣∣∣∣2 (36)

=
1

2
(cos2 τ + sin2 τ) =

1

2
. (37)

So a LP antenna will receiving only have the power available from a CP wave. If we have a CP
antenna receiving an LP wave, it is easy to prove that p = 1/2 also, as we might guess from a
reciprocity argument.
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In general we can define the unit vectors in terms of the polarization ellipse discussed earlier in
the course, in the receiving antenna’s coordinate system:

ˆ̀
eff = cos γ x̂ + sin γejδ ŷ (38)

êi = cos γi x̂ + sin γie
−jδi ŷ. (39)

Note that there is not a sign error in the exponential term of (39): we need this sign reversal
because the incident wave is traveling in the −z in our coordinate system. This leads to

p =
∣∣cos γ cos γi + sin γ sin γie

j(δ−δi)
∣∣2 . (40)

This result is highly useful when working out polarization mismatch factors for cases we have not
shown here (e.g. elliptical polarization).

Friis’ transmission formula, which accounts for all of the effects we have discussed, is

Wr

Wt

=
Gr(θr, φr)Gt(θt, φt)λ

2pqtqr
(4πR)2

(41)

or
Wr

Wt

=
Gr(θr, φr)Gt(θt, φt)λ

2(1− |Γt|2)(1− |Γr|2|êi · ˆ̀eff |2

(4πR)2
. (42)

In dB form,

Wr|dBW/dBm −Wt|dBW/dBm = Gr(θr, φr)|dB +Gt(θt, φt)|dB + 10 log10(1− |Γt|2) (43)

+10 log10(1− |Γr|2) + 20 log10 |êi · ˆ̀eff | − 10 log10(FSL)

where FSL = (4πR/λ)2. The “accounting” of loss factors is now starting to be come very
apparent.
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