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= | first met Julien at APS 2008 @ San Diego

— Julien was postdoc at CTTC, in Barcelona
(Spain).

— | was fresh PhD student @ UPCT (Spain) and
Montréal (Canada).

— We didn’t meet again in more than 3 years...
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= Adaptive MicroNano Wave System - Research Group

* Created inJune 2011 at EPFL

* Hosted at EPFL by two labs:
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* Mid size group:
e 2-3 postdocs
e 5PhD studets
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* Many conferences together
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Microwaves — THz
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| Dynamic reconfiguration |

* Update device functionality in real time
* Sense and adapt to environment
* Scan space, frequencies, polarization...
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Joint antenna-coding techniques

* Higher data-rate and lower-power
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artificial EM materials
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* Tailor extraordinary effective EM
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\_ * Reduced-complexity HW W, \_ properties
Use of micro/nano-technology:
E Graphene,MEMS, Electroactive polymers...
B * EM perf., higher freq., integration, low power

3 3 ﬂ H \Novel sensing applications (graphene) /
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Introduction

"= Graphene: the “famous” 2D material

_8‘__\
\\j—//;/ Fermi level (E;)

‘ = chemical potential ()

" | > } +E/2i\\4?/
(o - & 7Y
. ‘/ YMomentum (p=hk)
. 0.142\nm\ 4
' - -E/2

“Dirac Point”

E=tholf|p|

— 2D material: carbon atoms in 2D honeycomb lattice
— 1 atom thick = infinitesimally thin

|II

— “Semi-metal” or “zero-gap semiconductor”

— Ambipolarity: both electrons (E>0, n type doping) or holes (E<0, p type
doping) can conduct

— Massless electrons: E = J(@(ﬁ +(hv,p)’ ==hv,|p




Graphene conductivity: behavior and trends (1)

= Grapheneis 2D - entirely described by a surface conductivity
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= 7=relaxation time:

“collisions” of an e propagating on graphene

— Large = better conductivity !
— Highly depends on fabrication = quality of graphene
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— Rough interpretation: time between two consecutives ‘e

= 7=temperature
— T relevant only when close to Dirac point (small xc). B
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Graphene conductivity: behavior and trends (and 1I)

old (w7, T,/llf(E lbias)) |

= Doping or static electric field affect conductivity tensor:
A

Conductivity
(Re[gid],
:0)

T>0°

Chemical potential .

T=0° 0
pe / \
doping Ebias

* Easy dynamic control of conductivity!
* Real and imaginary parts affected
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Electromagnetic properties of graphene

= Absence of Albias and neglecting spatial dispersion
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— @ microwaves: mostly a resistive sheet

— @ THz: large inductive behavior (= plasmon propagation)
* Significant tuning effect

- Mu:

* Losses decrease
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Surface plasmons on graphene

= Plasmonic modes on metals at optics:

. . dielectric g,(w)
— at the interface between R

Example of plasmon propagation on a graphene sheet Graphene

sheet
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Plasmon waveguiding

"= Transmission line model
— Simple characterization of surface plasmon propagation on ribbons
— Excellent agreement with FEM results
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Graphene-based patch antennas at THz

= Graphene frequency-reconfigurable THz plasmonic dipole
— Exploit plasmonic resonances: miniaturized (=A,/20)
— Powerful and simple reconfiguration

— Good radiation efficiency
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Beamscanning THz leaky-wave antennas

= Based on sinusoidally-modulated surfaces:
— Demonstration of the concept viability. Theoretical analysis.
— Full-wave simulations confirm theoretical predictions
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Measurements @ microwaves

= Micro-millimeter waves
— Contactless RWG-based measurement.
— Extraction with “self-calibration procedure”

— Complex surface impedance obtained

inQ Ref 2
. I
Quartz Foam Air : 3000+
) —Q —Q
G 2500

an}/q Zf)}/f Zaa}/a

G
0
‘ 0 —0__ £ 2000|
" D i ) - O - ~
| d, d, d, qé 1500/ an
8 1000
W ©
ABCD — = R & 590
TGraphene E\i Zg ol \ : ) . L . )
o —o0 ¢ ° 24 26 28 30 32 34 36 38

Frequency (GHz)

J.S. Gomez-Diaz, J. Perruisseau-Carrier, P. Sarma and A. lonescu, “Non-Contact Characterization of Graphene
| Surface Impedance at Micro and Millimeter Waves”, Journal of Applied Physics, vol. 111, p. 114908, 2012. 17




Measurements @ THz

= Single-layer graphene structures: Measurements e, 0
— CVD fabrication of graphene on several substrates | i

— Measurements based on THz Time-domain Spectroscopy

— Good agreement with theory

— Unbiased graphene: 7=0.025 ps and x
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Graphene stacks

= Graphene stacks: Advanced reconfigurable capabilities
— One graphene layer bias the other one and vice-versa
— Boost reconfiguration range
— Analysis, design, fabrication and measurement at THz

== V=50V wfgm V,=—25V =iV ,=0V
-*V1=25V -V—V1=50V V

Vo (V)
J.S. Gomez-Diaz, C. Moldovan, S. Capdevilla, L. S. Bernard, J. Romeu, A. M. lonescu, A. Magrez, and J. Perruisseau-Carrier,
“Self-biased Reconfigurable Graphene Stacks for Terahertz Plasmonics”, Nature Communications, vol. 6, pp. 6334, 2015.
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Concluding Remarks

= Prof. Julien Perruisseau Carrier

payY * >

1979-2014

— We have reviewed some of Julien’s most significant contributions
to Graphene plasmonics:

* Surface plasmons @ THz + reconfiguration
* Novel devices: Waveguides, Antennas, etc.
* Graphene stacks at THz: boosted reconfigurable capabilities

— His research activities were even broader:
* Reflectarrays, MIMO technology, signal processing, MEMS, etc.

21



Thanks a lot for your attention !

juan-sebastian.gomez@utexas.edu




