Graphene Plasmonics: Theory and Experiments

J. Sebastian Gomez-Diaz and Andrea Alù

Department of Electrical and Computer Engineering
The University of Texas at Austin, US

- Prof. Julien Perruisseau-Carrier
- Theory of Graphene plasmonics
 - Unusual electromagnetic properties of graphene
 - Guided devices and antennas @ THz
- Experimental results
 - Surface impedance @ microwaves and THz
 - Graphene stacks
- Concluding remarks

- Prof. Julien Perruisseau-Carrier
- Theory of Graphene plasmonics
 - Unusual electromagnetic properties of graphene
 - Guided devices and antennas @ THz
- Experimental results
 - Surface impedance @ microwaves and THz
 - Graphene stacks
- Concluding remarks

Julien Perruisseau-Carrier (I)

- I first met Julien at APS 2008 @ San Diego
 - Julien was postdoc at CTTC, in Barcelona (Spain).
 - I was fresh PhD student @ UPCT (Spain) and Montréal (Canada).
 - We didn't meet again in more than 3 years...

Julien Perruisseau-Carrier (II)

Adaptive MicroNano Wave System - Research Group

- Created in June 2011 at EPFL
- Hosted at EPFL by two labs:
 - LEMA: <u>lema.epfl.ch</u>
 - Nanolab: <u>nanolab.epfl.ch</u>
- Very well funded!
- I was postdoc there from Nov. 2011 – March 2014
- Mid size group:
 - 2-3 postdocs
 - 5 PhD studets
 - Many conferences together

Julien Perruisseau-Carrier (and III)

Microwaves — THz

Dynamic reconfiguration

- Update device functionality in real time
- Sense and adapt to environment
- Scan space, frequencies, polarization...

Joint antenna-coding techniques

- Higher data-rate and lower-power
- Reduced-complexity HW

artificial EM materials

Tailor extraordinary effective EM properties

- EM perf., higher freq., integration, low power
- Novel sensing applications (graphene)

- Prof. Julien Perruisseau-Carrier
- Theory of Graphene plasmonics
 - Unusual electromagnetic properties of graphene
 - Guided devices and antennas @ THz
- Experimental results
 - Surface impedance @ microwaves and THz
 - Graphene stacks
- Concluding remarks

Introduction

Graphene: the "famous" 2D material

- 2D material: carbon atoms in 2D honeycomb lattice
- 1 atom thick ≈ infinitesimally thin
- "Semi-metal" or "zero-gap semiconductor"
- Ambipolarity: both electrons ($E_f>0$, n type doping) or holes ($E_f<0$, p type doping) can conduct
- Massless electrons: $E = \sqrt{(m^2)^2 + (\hbar v_f p)^2} = \pm \hbar v_f |p|$

Graphene conductivity: behavior and trends (I)

■ Graphene is 2D → entirely described by a surface conductivity

$$\longrightarrow \cdot H \downarrow 0 = 0$$

$$\cdot \text{No SD}$$

$$\longrightarrow$$
 $J=\sigma E$

$$\sigma(\omega, \tau T \mu c(E \downarrow bias))$$

- τ = relaxation time:
 - Rough interpretation: time between two consecutives "collisions" of an e⁻ propagating on graphene

- Large → better conductivity!
- Highly depends on fabrication \rightarrow quality of graphene
- T = temperature
 - T relevant only when close to Dirac point (small μc).

Graphene conductivity: behavior and trends (and II)

$$\sigma \downarrow d(\omega, T, \tau, \mu c(E \downarrow bias))$$

Doping or static electric field affect conductivity tensor:

- Easy dynamic control of conductivity!
- Real and imaginary parts affected

Electromagnetic properties of graphene

• Absence of $B \downarrow bias$ and neglecting spatial dispersion

$$\sigma = (\text{Id} \& 0 \& 0 \& \sigma \text{Id}) = \sigma \text{Id}$$

$$(\text{Il} \& 0 @ 0 \& 1)$$

$$Z_S = \frac{1}{\sigma_d}$$

- @ microwaves: mostly a resistive sheet
- @ THz: large inductive behavior (\rightarrow plasmon propagation)
- $\uparrow \uparrow \mu_c : \begin{cases} \bullet \text{ Significant tuning effect} \\ \bullet \text{ Losses decrease} \end{cases}$

Surface plasmons on graphene

- [1] M. Jablan, H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies," Physical review B, 2009.
- [2] A. Vakil and N. Engheta, "Transformation optics using graphene," Science, vol. 332, pp. 1291–1294, 2011.

Plasmon waveguiding

- Transmission line model
 - Simple characterization of surface plasmon propagation on ribbons
 - Excellent agreement with FEM results

J.S. Gomez-Diaz and J. Perruisseau-Carrier "Graphene-based plasmonic switches at near infrared frequencies", **Optics Express**, vol. 32, pp. 15490-15504, 2013.

Graphene-based patch antennas at THz

- Graphene frequency-reconfigurable THz plasmonic dipole
 - Exploit plasmonic resonances: miniaturized ($\approx \lambda_0/20$)
 - Powerful and simple reconfiguration
 - Good radiation efficiency

[1] M. Tamagnone, J. S. Gomez-Diaz, J. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," **Applied Physics Lett.**, 101, 214102, 2012 [2] M. Tamagnone, J.S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier "Analysis and Design of Terahertz Antennas Based on Plasmonic Resonant Graphene Sheets.", **Journal of Applied Physics**, 112, 114915, 2012.

Beamscanning THz leaky-wave antennas

- Based on sinusoidally-modulated surfaces:
 - Demonstration of the concept viability. Theoretical analysis.
 - Full-wave simulations confirm theoretical predictions

[1] M. Esquius-Morote, J.S. Gomez-Diaz, and J. Perruisseau-Carrier, "Periodically-Modulated Graphene Leaky-Wave Antenna for Electronic Beamscanning at THz", **IEEE Transactions on Terahertz Science and Technology**, 4, 116-122, January, 2014. [2] J. S. Gomez-Diaz, M. Esquius-Morote, and J. Perruisseau-Carrier, "Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips", **Optic Express**, 21, 24856-24872, 2013.

- Prof. Julien Perruisseau-Carrier
- Theory of Graphene plasmonics
 - Unusual electromagnetic properties of graphene
 - Guided devices and antennas @ THz
- Experimental results
 - Surface impedance @ microwaves and THz
 - Graphene stacks
- Concluding remarks

Measurements @ microwaves

Micro-millimeter waves

- Contactless RWG-based measurement.
- Extraction with "self-calibration procedure"
- Complex surface impedance obtained

J.S. Gomez-Diaz, J. Perruisseau-Carrier, P. Sarma and A. Ionescu, "Non-Contact Characterization of Graphene Surface Impedance at Micro and Millimeter Waves", **Journal of Applied Phy**sics, vol. 111, p. 114908, 2012.

Measurements @ THz

- Single-layer graphene structures: Measurements
 - CVD fabrication of graphene on several substrates
 - Measurements based on THz Time-domain Spectroscopy
 - Good agreement with theory
 - Unbiased graphene: $au{=}0.025$ ps and $\mu extcolor{\downarrow}$

Graphene stacks

- Graphene stacks: Advanced reconfigurable capabilities
 - One graphene layer bias the other one and vice-versa
 - Boost reconfiguration range
 - Analysis, design, fabrication and measurement at THz

J.S. Gomez-Diaz, C. Moldovan, S. Capdevilla, L. S. Bernard, J. Romeu, A. M. Ionescu, A. Magrez, and J. Perruisseau-Carrier, "Self-biased Reconfigurable Graphene Stacks for Terahertz Plasmonics", **Nature Communications**, vol. 6, pp. 6334, 2015.

- Prof. Julien Perruisseau-Carrier
- Theory of Graphene plasmonics
 - Unusual electromagnetic properties of graphene
 - Guided devices and antennas @ THz
- Experimental results
 - Surface impedance @ microwaves and THz
 - Graphene stacks
- Concluding remarks

Concluding Remarks

Prof. Julien Perruisseau Carrier

1979-2014

- We have reviewed some of Julien's most significant contributions to Graphene plasmonics:
 - Surface plasmons @ THz + reconfiguration
 - Novel devices: Waveguides, Antennas, etc.
 - Graphene stacks at THz: boosted reconfigurable capabilities
- His research activities were even broader:
 - Reflectarrays, MIMO technology, signal processing, MEMS, etc.

Thanks a lot for your attention!

juan-sebastian.gomez@utexas.edu