
Dynamic Reconfiguration of Plasmonic Reflectarrays  

Using Graphene:  
 

A Review of the Research Led by Prof. Perruisseau-Carrier 
 
Eduardo Carrasco1, Michele Tamagnone2,3, Tony Low4,5, Juan R. Mosig3 
 

1  Formerly with the Adaptive MicroNano Wave Systems group, (EPFL), currently Antenna Consultant, Spain/Switzerland 
2  Adaptive MicroNano Wave Systems group, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland 
3  Laboratory of Electromagnetics and Acoustics (LEMA), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland 
4  Department of Physics & Electrical Engineering, Columbia University, USA 
5  Department of Electrical & Computer Engineering, University of Minnesota, USA 
 
e.carrasco@ieee.org, michele.tamagnone@epfl.ch, tonyaslow@gmail.com, juan.mosig@epfl.ch 

 



2 

 Julien focused his research effort on frontier and 

interdisciplinary studies related to electromagnetic waves, from 

microwave to mid-Infrared. He made significant contributions to 

the field of reconfigurable antennas. 

 

 We would like to recognize the significant contributions of Julien 

to the field of reflectarray antennas, specifically with multi-

reconfiguration (spatial, frequency and/or polarization), by using 

semiconductors, MEMS, dielectric elastometer actuators and 

graphene.  

 

 This presentation summarizes some of the work led by Julien in 

the field of reflectarrays based on graphene.  

In Memoriam of  

Julien Perruisseau-Carrier 
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Graphene, the 2-D material 

 

 Graphene is the 2D (one-atom thick) crystalline form of carbon, 

arranged in hexagons. Called “semi-metal” or zero-gap 

semiconductor” 
 

 Very slow waves (plasmonic modes)  Extreme miniaturization 
 

 Monolithic integration with graphene nanoelectronics 
 

 Transparent at optical frequencies 
 

 Tunable via electric and magnetic field 
 

 Fabrication:  

- Small area (mm-mm) exfoliation 

• High quality 

- Larger area (> cm) chemical vapor deposition (CVD) 

• Enable much larger devices:  

Solar cells, displays, transparent electrodes, 

reflectarrays! 

Julien was very enthusiastic about using graphene to 

implementing reconfiguration in reflectarray type antennas. 
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TM plasmon on graphene strip :  

Im[s]< 0  

Graphene surface conductivity: 
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Graphene sheet 

(Top view) 

(Transversal  view) 

Plasmonic modes on graphene: 

Im[s]< 0  (or Im[ZS]> 0) 

 plasmons! 

@ lower frequency than metals 

Plasmonic Modes in Graphene at THz and IR 
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qe : electron charge 

kB : Boltzmann constant 

h : reduced Planck constant 

fd(): Fermi distribution 

 Kubo formula 

Intraband term Interband term 
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Bbias=0 

negigible 

Angular frequency (2f) 

L. Falkovsky and S. Pershoguba, Phys. Rev. B76, 153410 (2007) 

Chemical potential, c, (E field bias)  applied voltage  

Scattering rate, =1/2,  : relaxation time  graphene quality 

Temperature 

Graphene Conductivity Modelling 
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 Fixed-beam reflectarray at THz using graphene: unit cell 

– Plasmonic   extremely miniaturized element  

– At least 290° of phase-shift  by varying patch size 
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hquartz=25 m 

(r=3.75 tan=0.0184 @ 1.3THz) 

µc=0.19eV 

Plasmonic arrays (Varying size patch, fixed c ) 

Important reduction in size! 

 

Plasmons at much lower frequencies than metal! 



 Fixed-beam reflectarray at THz using graphene: whole array 
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 Reconfigurable-beam: fixed-size elements but each cell independent control of 

chemical potential 
– Design patch for best behaviour when chemical potantial is varied 
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Dynamic Reconfiguration (1.3 THz) 
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 Equivalent circuit, where the graphene patch between two stratified media (air-quartz) 

is represented as an RLC circuit in parallel with the grounded substrate and referred 

to the intrinsic impedance of air.  
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Dynamic Reconfiguration (1.3 THz) 
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ground plane 

substrate  

aperiodic array of nanoribbons 

(graphene) 

superstrate  

Working frequency: 27 THz (900 cm-1) 

 

Number of elements: 224 nanoribbons 

 

Separation between nanoribbons: p=140 nm 

 

Width variation: from w=40 nm to w=140 nm 

 

Width optimization for c1=1.0 eV 

biasing source 
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 Patches are replaced by aperiodic nanoribbons (bending in XZ plane) 

 Biasing between graphene and a new superstrate 

Width profile along the array 
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Laser beam impinging with i=-45°. 

Array profile optimized for bending the 

beam towards r=0° if c=c1=1.0eV  

(A progressive phase-shift in reflection 

is produced along the array).  

The progressive phase-shift 

disappears if chemical potential is 

adjusted to c=c2=0.3eV. The beam 

is bend towards the specular direction 

r=45° (A constant phase in reflection 

is produced along the whole surface 

of the array). 
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Dynamic Beam-Bending Array (Mid-Infrared) 
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 Full vectorial scattering matrix 

 Floquet’s boundaries assumption 

 Angle of incidence taken into account 

 Gaussian beam incidence 
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Dynamic Beam-Bending Array (Mid-Infrared) 
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Continuos steering is possible using independent biasing for 

each nanoribbon or at least for some groups  

Far-Field Bent Beams (Middle states) 
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 The work led by Julien in the field of graphene-based reflectarrays 

has been published in the following journal papers, one of them 

posthumously and dedicated to his memory :  

In Memoriam of  

Julien Perruisseau-Carrier 
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 Just a part of the contributions of Julien to the field of graphene-

based devices. His wide expertise in the graphene field will be 

covered in other presentations: 

 

 Pros and cons of patterning graphene layers, Arya Fallahi (Later in this 

session). 
 

 Theoretical Limits of Graphene Terahertz Non Reciprocal Devices, 

Michele Tamagnone (Today, 17:30). 

In Memoriam of  

Julien Perruisseau-Carrier 
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