

In the memory of **Julien Perruisseau-Carrier:** (1979 - 2014)His contributions to reconfigurable reflectarrays and COST Actions on Antennas

Özlem Aydin Civi

Middle East Technical University, Department of Electrical & Electronics Eng. Ankara, TURKEY ozlem@metu.edu.tr

Outline

- Contributions and impact of Julien on Antenna COST actions
- Collaboration with Julien: Dual Frequency Circularly Polarized Beam Steering Reflectarray
- Fast and efficient analysis method for the design of reflectarrays based on element rotation

Prof. Julien Perruisseau-Carrier

- **EDUCATION & PROFESSIONAL EMPLOYMENT**
- 1999 2003: M.Sc in Electrical Engineering, EPFL, Switzerland
- 2003 2004: Junior scientist following MSc. thesis, University of Birmingham, UK
- 2004 2007: PhD in Electrical Engineering, EPFL, Switzerland
- 2007 2011: Research Associate, CTTC, Barcelona, Spain
- 2011 2014: Professor (Swiss National Science Foundation), EPFL, Switzerland

RESEARCH AREAS

Interdisciplinary and frontier topics in EM wave theory and applications (microwaves to THz)

- Dynamic reconfiguration and adaptability: reconfigurable antennas, reflectarrays
- Micro/Nanotechnology for EM waves MEMS, NEMS, Graphene
- Joint antenna-coding techniques
 MIMOs, disruptive techniques for reduced complexity, mobile terminals
- Electromagnetic metamaterials

control of phase, amplitude, polarization, and radiation in artificial EM structure

According to Google Scholar

- Citiations: 1555
- h-index: 21
- i10-index: 39

015

METU

How we met - AMICOM

Project: AMICOM: European Network of Excellence on RF MEMS and RF Microsystems Funding: European Union FP6 network of excellence Role: Various technical collaborations, including the design and realization of MEMS-variable CRLH-TLs and MEMS-reconfigurable reflectarray cells.

Collaboration with EPFL (Prof. Anja Skrivervik & Julien Perruisseau, PhD canditate):

- fabrication of EPFL's devices by METU
- collaboration on EM modelling tools and reflectarrays
- Julien's visit to METU: Oct 18-November 12, 2004

AMICOM MEMSWAVE Workshop, Laussane 2005

J. Perruisseau-Carrier, K. Topalli, and T. Akin, "Low-loss Ku-band Artificial Transmission Line with MEMS Tuning Capability," *IEEE Microwave and Wireless Components Letters*, vol. 19, no. 6, pp. 377-379, June 2009.

9th European Conference on Antennas and Propagation, Lisbon, Portugal, 12-17 APRIL 2015

COST ASSIST IC0603

Project: **COST ASSIST** ICo603: Antenna Systems and Sensors for Information Society Technologies. *Funding*: European Union, 2007-2011 *Role*: Leader of the Focus Area 'Reconfigurable & Multibeam Antennas'.

Short Term Scientific Mission: Caner Güçlü from METU visited Julien Perruisseau-Carrier from CTTC

26 October to 7 November 2009

C. Guclu, J. Perruisseau-Carrier, O. Aydın Civi, "Proof of Concept of a Dual-band Circularly-polarized RF MEMS Beam-Switching Reflectarray, IEEE Transactions on Antennas and Propagation, vol.60, no.11, pp. 5451 - 5455, 2012.

9th European Conference on Antennas and Propagation, Lisbon, Portugal, 12-17 APRIL 2015

8th ICo6o3 meeting, Les Diablerets, Switzerland, 16-18 March 2011

Contributions to COST VISTA Versatile, Integrated, and Signal-aware Technologies for Antennas

- contributed to the preparation of proposal
- we owe him the "Versatile" "Signal-Aware" part of title

COST VISTA Working Groups

015

- WG1 WHY? System applications & requirements
- WG₂ HOW? Enabling technologies
- WG₃ WITH WHAT? Supporting technologies: modelling and characterisation
- WG4 WHO? Support of ESR & societal aspects

COST VISTA IC1102

- set up the *Technology Platforms* to enhance the exchanges among the participants
- organized several sessions in COST VISTA workshops and EuCAPs

Organisation Nows Events Featured Publications Technology Meeti

Home Technology

Technology

These are some of the technologies available at VISTA member's sites

And a series of the series of

Manufacturing technologies

- Antenna Prototyping IT
- Graphene EFFL
- RF MEMS METU
- Direct-Write Printing SDSMT
- LTCC VTT

Contributions to this section should be sent to WG2 leader. Jorge Costa

Measurement technologies

- Antenna Measurement IT
- Reconfigurable Antenna Measurements SDSMT
- on, Lisbon, Portugal, 12-17 APRIL 2015

Reflectarrays – advantages

compared to parabolic reflectors

- Advantages
 - Planar
 - Low mass
 - Low manufacturing cost
 - Easy to fabricate
 - Ease of integration with dynamic components
 - Electronic scanning is possible
- Disadvantages

2015

• Narrowband

compared to phased arrays

Reflectarrays are space fed arrays

- no need for complex feed network
- eliminates losses and parasitic radiations of the feed network

Dual Frequency Circularly Polarized

Beam Steering Reflectarray

- Prototype on 4" quartz wafer at 24.4 GHz and 35.5 GHz
- Beam steering capability
- Reflectarray element: split ring
- Phase shift is provided by rotation of the ring
- Position of the split is controlled by RF-MEMS switches
- Production by micromachining based MEMS process developed in METU
- Monolithic integration of switches with the antenna elements

Co-polarized

component

CP incident field propagating in the -z direction

$$\vec{E^i} = (\hat{a}_x + j \hat{a}_y) E^i e^{jz}$$

Cross-polarized component

ΜΕΤυ

Reflected field for the ψ degree-rotated element

$$\overrightarrow{E^{r}} = 0.5E^{i}(\overrightarrow{\Gamma_{x}} - \overrightarrow{\Gamma_{y}})(\hat{a}_{x} - j \hat{a}_{y})e^{j2\psi}e^{-jz} + 0.5E^{i}(\overrightarrow{\Gamma_{x}} + \overrightarrow{\Gamma_{y}})(\hat{a}_{x} + j \hat{a}_{y})e^{-jz}$$
Reflection
coefficient of
x-pol. component
Reflection coefficient of
y-pol. component
Reflection component
Component
Component
Component
Component
Coefficient of
y-pol. component
Component
Coefficient of
y-pol. component
Component
Coefficient of
y-pol. component
Componen

Huang, J.; Pogorzelski, R.J., "A Ka-band microstrip reflectarray with elements having variable rotation angles," *Antennas and Propagation, IEEE Transactions on*, vol.46, no.5, pp.650-656, May 1998

Dual Frequency Operation

Comparison of Simulations and

Measurements at 24.4 GHz

Comparison of Simulations and

Measurements at 35.5 GHz

Fast and efficient analysis method

- Reduction of the MoM matrix equation size significantly using characteristic modes as macro basis functions
- Reusability of characteristic modes

- dominant characteristic mode of the resonant patch can be used for all differently sized patches on the array
- Construction of reduced impedance matrix in a very efficient way

For details: Wednesday C₂6 INTELLECT Session: Diogo Cão (Aud 8) 17.10: Efficient Analysis of Reflectarrays Through the Use of Characteristic Modes, E. Erçil, L. Alatan, Ö. Aydin Civi

Efficient Calculation of Mutual Couplings

$$\widetilde{Z}_{ij} = \overline{J}_1^T \overline{Z}^{ij} \overline{J}_1 = f(d_x, d_y, s_i, s_j) \approx g(d_x, d_y) h(s_i, s_j)$$

METU

1) f's at different (d_x, d_y) are almost same within a scaling constant

2) f's at different (s_i,s_j) are almost same within a scaling constant
 → f is almost separable

Analysis Example

- cosecant square fan beam pattern
- Frequency: 10 GHz.
- Reflectarray size: 30 × 30 elements.
- Spacing between elements: 0.6λ in both dimensions
- Substrate: thickness=1.588 mm, ε_r =4.2.
- Distance of feed antenna: 12 λ_0 .
- Feed antenna: Horn : $1.3\lambda_0 \times 0.58\lambda_0$.

HFSS:

run on super computer with 512 CPUs

Solution time: 9 hours Memory : 179 GB

Proposed Method:

Run on Intel Core i5 2500, 3.3 GHz Clock Speed, 64 Bit OS.

Solution time < 0.33 sec

9th European Conference on Antennas and Propagation, Lisbon, Portugal, 12-17 APRIL 2015

ΜΕΤυ

Contributors

- Julien Perruisseau-Carrier
- Lale Alatan
- Erdinc Ercil
- Caner Güçlü
- Ömer Bayraktar

METU

We miss Julien!

9th European Conference on Antennas and Propagation, Lisbon, Portugal, 12-17 APRIL 2015